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PREVIEW

@ A novel class of path-dependent options — cross-over (CO) options
@ A CO option is a type of volatility instrument

@ A CO option can be robustly replicated under very general conditions

e Model-free — general price process, including jumps
e Exact at any frequency — no discretization or jump errors.

@ A vanilla option is a special case of CO options. This connection
produces a number of new results and applications for vanilla options

o A new model-free replication strategy for vanilla options

o A new fundamental decomposition of vanilla option value into two parts:
(1) due to continuous moves and (2) due to jumps

@ Many potential applications
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SETUP

@ A frictionless, arbitrage-free market with a single risky asset over [0, T|

@ F; is the forward price of the risky asset. Can ignore dividends, risk-free rate
® T = {to,t1,...,ts} is a monitoring partition, where 0 =ty < t; < ... <t, =T
@ At:=max;(t; —ti_1)

[ P(KT) if K<Fp
° Mi(K,T):= { CKT) if K>F
where P;(K, T) and C¢(K, T) are prices of European put and call with strike K and
maturity T
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CROSS-OVER OPTIONS

@ A CO option has a barrier K and expires at time-T with payoff

n
q)T = q)T(K, T) = ZB(F,’,LF,‘,K) ‘F,‘ - K‘, where
i=1

1 if U(Fj.1 —K)+U(F;—K)=1
B(Fi-1,Fi K) ::{ 0 othe(rvz/isle ) =5

indicates whether barrier is crossed over [t;_1,t;] and U(x) := 1,y (for “Up”)

@ Every time barrier K is crossed over (from above or below), payoff function gets
increased by amount of “overshoot” |F; — K|
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FIGURE: CO payoff with T = 1 year, K = 0.95, At = I-month. ®1 = Sum of lengths of red stems.
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CO OPTION AT DIFFERENT FREQUENCIES

At = 1 year, 7 = 0.069

At = 1 month, &7 = 0.121
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FIGURE: CO payoff with T = 1 year and K = 0.95.
day, and 1 hour. 1 = Sum of lengths of red stems.
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CO OPTION AT DIFFERENT FREQUENCIES

At = 1 year, By — 1 At = 1 month, By = 3
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FIGURE: Accumulated payoff ®; of the CO option with T = 1 year and barrier K = 0.95.
Monitoring frequency At = 1 year, 1 month, 1 day, and 1 hour. The realized number of crossing is
Br = Br(K, T) := Y., Crossed,;.
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CROSS-OVER OPTIONS

@ Realized payoff 1 depends on specific price path and partition 7

@ For smaller At, crossings are more frequent, but overshoots are smaller

@ Remarkably, the market price of CO option, COy(K) = EE)Q [@7], does not
depend on T

@ This is because CO payoff satisfies certain Aggregation Property (AP)
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AGGREGATION PROPERTY

Bondarenko (2014, JE):

H(x,y) satisfies Aggregation Property (AP), if for any martingale X; and for any times
0<t<s<u<T,

AP:  EQH(X:, X.,)] = EQ[H(X:, Xs)] + EQ[H(Xs, Xu)]-

If H(x,y) satisfies AP, then discretely-sampled payoff } ' ; H(F;_1, F;) has same market
price as time-T payoff H(Fy, Fr):

EQ {iH(FM/Pi)} = ES [H(Fo, Fr)] .
i=1
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AGGREGATION PROPERTY AND ROBUST REPLICATION

@ Payoffs that satisfy AP are rare, but special

@ Important for variance trading, which relies on two key insights:

1) Reduce path-dependent payoff to path-independent one — need AP

2) Replicate path-independent payoff with a static portfolio of vanilla options —
need Carr and Madan (1998) spanning formula

@ Payoffs that satisfy AP can be robustly replicated

@ A replication strategy is robust, if it
1) is model-free, including jumps
2) holds for any partition 7 (non-equidistant, non-small At)
3) consists of two parts:

(1) a static position in a portfolio of vanilla options
(11) adiscrete dynamic trading in underlying on dates in 7~
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VARIANCE TRADING

@ Want to price a contract which pays discretely-sampled realized variance:

n
RV = RVO(T):=Y 7,

i=1

n
RV = RVO(T):=) 42,

Il
—

where r; = log ( ;"1) and x; = Fl-:il
1— 1—

— 1 are log and simple returns over [t;_1, ;]

@ Impossible to robustly replicate payoffs RV(Tl) and RV(T2>. But possible for

something close enough:

RVY) = RVO(T):=

M-

I
—

2(i—1-r;).
I
@ “Modified” realized variance (or, realized entropy) RV;S)

strictly positive and very similar to RV(Tl) and RV%Z)

looks strange, but is

RVE) ~ LRy
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THREE FUNCTIONS

Three functions for discretely-sampled variance
T
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FIGURE: Functions f) (x) = [In(1 4 x)], f@ (x) = 2, and f® (x) = 2 (x — In(1 + x)) used in
definitions of RV{”, Rv{?), and RV{®.

@ Modified realized variance RV(T3> satisfies AP and its market price

EQRVY)) =2 / %M = MFIV = Ideal VIX?
0

@ Bondarenko (2004) uses RV?) to document negative VRP for S&P 500 and to
show hedge funds routinely sell short volatility
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CORRIDOR VARIANCE CONTRACTS

@ Corridor realized variance — accumulates when F; is between barriers By and B,

o Carr and Madan (1998), Andersen and Bondarenko (2007)
o Up- and Down-Variance — Andersen and Bondarenko (2011)

@ Andersen, Bondarenko, and Gonzalez-Perez (2015), a version that satisfies AP:

CRVY 22( <@) 1n,F")
Fia Fia

where F is the corridor truncation operator

- By, F< B
F= F, Bi<F<B
Bo, F > B,.

@ [Its market price

dK ~ “Real” VIX?

B
EQ[CRVI)] =2 /B » Mr(K)
1

@ Important advantage: deep OTM puts and calls are now not required
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GENERALIZED VARIANCE CONTRACTS

@ Power-price weighted variance contracts of Bondarenko (2014) — approximate
fOT F{ vidt for different power a:

a A(x) B(x) = —A'(x) | 3A"(x)¥* | H(xy) = Aly) - Ax) +B@)(y — %)
-1 : %z : (y—x? jCzy

0 —2In(x) 2 1 2(£-1-In(%))

1 | 2(xIn(x) —x) —2In(x) x 2(yin(L)—(y—x)

2 x? —2x x? (y —x)?

3 a8 —x? X Ly—x)2(2x+y)

@ Special cases:

e a = 0-“Standard” variance RV§-3)
e a =1-"Gamma” variance
e g = 2-"Simple” variance, Carr and Corso (2001), Martin (2017):

n

ZF Fll

i=1

@ Divergence power swaps, Schneider and Trojani (2019), a = % ; Realized
skeweness, Orlowski, Schneider, Trojani (2021)
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CO OPTION AND AP

Proposition: CO payoff function H(x,y) := B(x,y, K) |y — K| satisfies AP.

H(z,y) = B(r,y;K) - |y — K|
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CO OPTION AND AP

Proposition: For any 7, payoff ®r can be perfectly replicated by
(1) atime-T payoff equal to Mr(K);
(11) a dynamic trading strategy, which is rebalanced on dates t; € 7 to maintain
w; = U(Fy — K) — U(F; — K) shares of the underlying.
Therefore,
EF [®r] = Mo(K).

@ Static position is long one OTM option
@ Dynamic strategy is binary:

e If starting below the barrier, Fy < K

B {0 if F<K
wf—_u(Fl‘K)—{ 1 if F>K

o If starting above the barrier, Fy > K

if F;<K

1
wi:l*u(Ff*K):{ 0 if F>K
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DYNAMIC STRATEGY

@ The initial position wy is always 0

@ Adjusted every time the barrier is crossed over

<K _ > K
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FIGURE: Dynamic replication strategy: T = 1 year, K = 1.05 or 0.95, and At = 1 month.




REPLICATION OF n-PERIOD VANILLA OPTION

Proposition: For any 7, payoff Mr(K, T) can be perfectly replicated by
(1) buying n 1-period OTM options with strike K on dates fg, t1,...,t,—1;

(11) a dynamic trading strategy, which is rebalanced on dates t; € 7 to maintain
u; = U(F; — K) — U(Fy — K) shares of the underlying.

@ Fe., a10-year OTM put (not traded) can be replicated by rolling over ten 1-year
OTM options (traded)

@ These 1-year options all have same strike K and are OTM on purchase day, but
option type (Call or Put) depends on a particular price path
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FURTHER RESULTS

PORTFOLIOS OF CO OPTIONS

Proposition: Any payoff that satisfies AP can be viewed as a portfolio of CO options.

@ CO options are building blocks to engineer generalized variance contracts

CONTINUOUS-TIME LIMIT

Proposition: For a general semimartingale F;, My(K, T) = EBQ [3A7(K) +Jr(K)]

@ A((K) is local time process (measures time spent at point K over interval [0, ¢]):

. 1 t ot
AK) = lim o [ cpoio dFls where [Fl= [ Fods

@ J;(K) is a pure jump process. At time s, it increases if
(1) thereisajump, AFs = Fs —Fs— #0
(2) the jump crosses over the barrier, B(F;—,F;,K) =1
JH(K) = ¥ (R = K)* = (Fe = K)" =135, oigAFs) = L H(Fs )

s<t s<t

@ Carr and Jarrow (1990) only consider continuous semimartingales. J;(K) accounts
for two types of discontinuities: (i) true jumps, or (ii) non-trading periods
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APPLICATIONS

@ Many potential applications, both for practitioners and academics
@ A CO option pays “variance along barrier K”

@ A useful risk-management tool in its own right. Traders can bet on volatility
around special price levels (support, resistance)

e “Pinning risk” — large positions of market makers for a certain strike

o Useful for mean-reverting assets: VIX, FX, interest rates

@ Use CO options as building blocks to engineer generalized variance contracts
(say, realized variance swaps)

@ Availability of robust replication means market makers will post tight quotes in
CO options

@ New model-free replication strategy:
n-year OTM option as a sequence of 1 1-year options
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APPLICATIONS

Can study jumps: Diffusion shocks and jumps have different contributions to CO
payoff ®7. Two types of discontinuities:

o Real jumps
e Non-trading periods

@ Since vanilla options are CO options, can exploit this connection
@ New perspective on “expensive put puzzle”
@ Risk-premium for variance along different barriers

@ Pricing by Monte-Carlo simulations
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VALUING VANILLA OPTIONS BY MC SIMULATIONS

@ Use Monte-Carlo (MC) to value a vanilla option with no closed-form solution
(say, SABR model of Hagan et al (2002))

@ Simulate ] price histories, compute payoff for each history j, and average them

@ Important: Can use any CO option to construct an unbiased estimator for vanilla
option!

@ Take At =T/n, <I>’n is CO payoff for history j, and

o 1d
Via=2Y @,
] 5

o 1 = 1: traditional MC estimator based on path-independent & = (K — FjT)Jr
e 1 > 1: new estimator based on path-dependent CO payoff
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RELATIVE EFFICIENCY OF MC ESTIMATORS

k=095 k = 1.00
Model | n=1 »=10 »n=10> #»n=10®> AV | n=1 n=10 »n=102 »n=10° AV

BS | 1.00 2.07 243 2.49 374 | 1.00  2.55 3.08 3.15 6.21
JD | 1.00  1.68 1.84 1.86 225 | 1.00  2.01 2.26 2.29 3.31
SV | 1.00 219 2.63 2.70 385 | 1.00 271 3.37 3.47 6.12

TABLE: Relative Efficiency of five MC estimators for a put option under BS, JD, and SV models
when T = 1 year, k = 0.95 or 1.00.
@ New estimator is the more accurate, the larger n
@ Relative Efficiency (RE) of ¥, with respect to ¥y is
EQ[(Ih—-V)}] o2

Rﬂmym:ﬁﬁﬁiﬁﬁzg

@ The “average” estimator:
- 1. 1. 1. 1.
Vav = 7Vi+ 1V1o+ V100 + 3 Viooo

@ Gain in efficiency is considerable. For ATM put, 4y achieves a given accuracy
6.2 times faster than V; under BS model
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INTUITION

@) for n = 1 ®j, for n = 10
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@ Traditional estimator V/; uses final price P]f only — it is very “wasteful”

@ New estimator ¥/, uses 7 points from each history. Intermediate prices too
contain useful information. Estimator is the more efficient, the larger n

@ Not obvious. Conditional on Fr, why does it help to know intermediate prices?
@ Correlation between <I>’1 and d>’n is low for high n

@ Can do better than V4y by using optimal weights
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CONCLUSION

@ Introduce a new class of path-dependent options — CO options

@ A CO payoff satisfies AP and can be robustly replicated

1) model-free, including jumps
2) holds exactly for any partition 7 (non-equidistant, non-small At)

3) consists of two parts:

(1) a static position in vanilla options
(11) adiscrete dynamic trading in underlying

@ CO options generalize vanilla options, leading to many new results and
applications for vanilla options

@ Itis common to use geographical references to name different types of exotic
options: European, American, Bermudan, Canary, Asian, Russian, Parisian, Boston, etc.

Maybe refer to CO options as Ukrainian?
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Thank you!

Access the paper at

https://papers.ssrn.com/abstract_id=4592789
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