CROSS-OVER OPTIONS

Oleg Bondarenko

University of Illinois at Chicago

2025 osQF Conference UIC, Chicago 11-12 April, 2025

イロト イヨト イヨト イヨト

æ

PREVIEW

- A novel class of path-dependent options cross-over (CO) options
- A CO option is a type of volatility instrument
- A CO option can be robustly replicated under very general conditions
 - Model-free general price process, including jumps
 - Exact at any frequency no discretization or jump errors.
- A vanilla option is a special case of CO options. This connection produces a number of new results and applications for vanilla options
 - A new model-free replication strategy for vanilla options
 - A new fundamental decomposition of vanilla option value into two parts: (1) due to continuous moves and (2) due to jumps
- Many potential applications

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- A frictionless, arbitrage-free market with a single risky asset over [0, *T*]
- *F_t* is the forward price of the risky asset. Can ignore dividends, risk-free rate
- $T = \{t_0, t_1, ..., t_n\}$ is a monitoring partition, where $0 = t_0 < t_1 < ... < t_n = T$
- $\Delta t := \max_i (t_i t_{i-1})$
- $M_t(K,T) := \begin{cases} P_t(K,T) & \text{if } K \leq F_0 \\ C_t(K,T) & \text{if } K > F_0 \end{cases}$

where $P_t(K, T)$ and $C_t(K, T)$ are prices of European put and call with strike *K* and maturity *T*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

CROSS-OVER OPTIONS

• A CO option has a barrier K and expires at time-T with payoff

$$\Phi_T = \Phi_T(K, \mathcal{T}) := \sum_{i=1}^n B(F_{i-1}, F_i, K) |F_i - K|, \quad \text{where}$$

$$B(F_{i-1}, F_i, K) := \begin{cases} 1 & \text{if } U(F_{i-1} - K) + U(F_i - K) = \\ 0 & \text{otherwise} \end{cases}$$

1

イロト イヨト イヨト イヨト

2

indicates whether barrier is crossed over $[t_{i-1}, t_i]$ and $U(x) := 1_{\{x>0\}}$ (for "Up")

 Every time barrier K is crossed over (from above or below), payoff function gets increased by amount of "overshoot" |F_i - K|:

FIGURE: CO payoff with T = 1 year, K = 0.95, $\Delta t = 1$ -month. $\Phi_T =$ Sum of lengths of red stems.

CO OPTION AT DIFFERENT FREQUENCIES

FIGURE: CO payoff with T = 1 year and K = 0.95. Monitoring frequency $\Delta t = 1$ year, 1 month, 1 day, and 1 hour. $\Phi_T =$ Sum of lengths of red stems.

• □ > • □ > • □ > • □ > • □ >

臣

CO OPTION AT DIFFERENT FREQUENCIES

FIGURE: Accumulated payoff Φ_t of the CO option with T = 1 year and barrier K = 0.95. Monitoring frequency $\Delta t = 1$ year, 1 month, 1 day, and 1 hour. The realized number of crossing is $B_T = B_T(K, T) := \sum_{i=1}^{n} Crossed_i$.

- Realized payoff Φ_T depends on specific price path and partition \mathcal{T}
- For smaller Δt , crossings are more frequent, but overshoots are smaller
- Remarkably, the market price of CO option, $CO_0(K) = E_0^{\mathbb{Q}}[\Phi_T]$, does **not** depend on \mathcal{T}
- This is because CO payoff satisfies certain Aggregation Property (AP)

・ロト ・ ア・ ・ ア・ ・ ア・

Bondarenko (2014, JE):

H(x, y) satisfies Aggregation Property (AP), if for any martingale X_t and for any times $0 \le t \le s \le u \le T$,

AP: $E_t^{\mathbb{Q}}[H(X_t, X_u)] = E_t^{\mathbb{Q}}[H(X_t, X_s)] + E_t^{\mathbb{Q}}[H(X_s, X_u)].$

If H(x, y) satisfies AP, then discretely-sampled payoff $\sum_{i=1}^{n} H(F_{i-1}, F_i)$ has same market price as time-*T* payoff $H(F_0, F_T)$:

$$E_0^{\mathbb{Q}}\left[\sum_{i=1}^n H(F_{i-1}, F_i)\right] = E_0^{\mathbb{Q}}\left[H(F_0, F_T)\right].$$

イロト イヨト イヨト イヨト

AGGREGATION PROPERTY AND ROBUST REPLICATION

- Payoffs that satisfy AP are rare, but special
- Important for variance trading, which relies on two key insights:
 - 1) Reduce path-dependent payoff to path-independent one need AP
 - Replicate path-independent payoff with a static portfolio of vanilla options need Carr and Madan (1998) spanning formula
- Payoffs that satisfy AP can be robustly replicated
- A replication strategy is *robust*, if it
 - 1) is model-free, including jumps
 - 2) holds for *any* partition \mathcal{T} (non-equidistant, non-small Δt)
 - 3) consists of two parts:
 - (I) a static position in a portfolio of vanilla options
 - (II) a *discrete* dynamic trading in underlying on dates in \mathcal{T}

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

• Want to price a contract which pays *discretely-sampled* realized variance:

$$\begin{split} RV_T^{(1)} &= RV^{(1)}(\mathcal{T}) := \sum_{i=1}^n r_i^2, \\ RV_T^{(2)} &= RV^{(2)}(\mathcal{T}) := \sum_{i=1}^n x_i^2, \end{split}$$

where $r_i = \log \left(\frac{F_i}{F_{i-1}}\right)$ and $x_i = \frac{F_i}{F_{i-1}} - 1$ are *log* and *simple* returns over $[t_{i-1}, t_i]$

• Impossible to robustly replicate payoffs $RV_T^{(1)}$ and $RV_T^{(2)}$. But possible for something close enough:

$$RV_T^{(3)} = RV^{(3)}(\mathcal{T}) := \sum_{i=1}^n 2(e^{r_i} - 1 - r_i).$$

• "Modified" realized variance (or, realized entropy) $RV_T^{(3)}$ looks strange, but is strictly positive and very similar to $RV_T^{(1)}$ and $RV_T^{(2)}$

$$RV_T^{(3)} \approx \frac{2}{3}RV_T^{(1)} + \frac{1}{3}RV_T^{(2)}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

THREE FUNCTIONS

Three functions for discretely-sampled variance 0.012 0.0 0.008 0.006 0.004 0.002 -01 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 Return x

FIGURE: Functions $f^{(1)}(x) = [\ln(1+x)]^2$, $f^{(2)}(x) = x^2$, and $f^{(3)}(x) = 2(x - \ln(1+x))$ used in definitions of $RV_T^{(1)}$, $RV_T^{(2)}$, and $RV_T^{(3)}$.

• Modified realized variance $RV_T^{(3)}$ satisfies AP and its market price

$$E_0^{\mathbb{Q}}[RV_T^{(3)}] = 2\int_0^\infty \frac{M_0(K,T)}{K^2} dK = MFIV = \text{Ideal } VIX^2$$

• Bondarenko (2004) uses $RV_T^{(3)}$ to document negative VRP for S&P 500 and to show hedge funds routinely sell short volatility

Э

CORRIDOR VARIANCE CONTRACTS

- Corridor realized variance accumulates when F_t is between barriers B_1 and B_2
 - Carr and Madan (1998), Andersen and Bondarenko (2007)
 - Up- and Down-Variance Andersen and Bondarenko (2011)

• Andersen, Bondarenko, and Gonzalez-Perez (2015), a version that satisfies AP:

$$CRV_T^{(3)} = \sum_{i=1}^n 2\left(\frac{F_i}{\overline{F}_i} \left(\frac{\overline{F}_i - \overline{F}_{i-1}}{\overline{F}_{i-1}}\right) - \ln\frac{\overline{F}_i}{\overline{F}_{i-1}}\right)$$

where \overline{F} is the corridor truncation operator

$$\overline{F} = \begin{cases} B_1, & F < B_1 \\ F, & B_1 \le F \le B_2 \\ B_2, & F > B_2. \end{cases}$$

Its market price

$$E_0^{\mathbb{Q}}[CRV_T^{(3)}] = 2 \int_{B_1}^{B_2} \frac{M_T(K)}{K^2} dK \approx "\text{Real" } VIX^2$$

Important advantage: deep OTM puts and calls are now not required

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

• Power-price weighted variance contracts of Bondarenko (2014) – approximate $\int_0^T F_t^a v_t dt$ for different power *a*:

а	A(x)	B(x) = -A'(x)	$\tfrac{1}{2}A''(x)x^2$	H(x,y) = A(y) - A(x) + B(x)(y-x)
-1	$\frac{1}{x}$	$\frac{1}{x^2}$	$\frac{1}{x}$	$(y-x)^2 \frac{1}{x^2y}$
0	$-2\ln(x)$	$\frac{2}{x}$	1	$2\left(\frac{y}{x}-1-\ln\left(\frac{y}{x}\right)\right)$
1	$2(x\ln(x)-x)$	$-2\ln(x)$	x	$2\left(y\ln\left(\frac{y}{x}\right) - (y-x)\right)$
2	<i>x</i> ²	-2x	<i>x</i> ²	$(y - x)^2$
3	$\frac{1}{3}x^{3}$	$-x^{2}$	<i>x</i> ³	$\frac{1}{3}(y-x)^2(2x+y)$

Special cases:

- a = 0 -"Standard" variance $RV_T^{(3)}$
- *a* = 1 "Gamma" variance
- a = 2 -"Simple" variance, Carr and Corso (2001), Martin (2017):

$$\sum_{i=1}^{n} (F_i - F_{i-1})^2$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Divergence power swaps, Schneider and Trojani (2019), a = ¹/₂; Realized skeweness, Orlowski, Schneider, Trojani (2021)

CO Option and AP

Proposition: CO payoff function H(x, y) := B(x, y, K) |y - K| satisfies AP.

FIGURE: Function H(x, y) in CO payoff when K = 1.0.

CO OPTION AND AP

Proposition: For any \mathcal{T} , payoff Φ_T can be perfectly replicated by

- (I) a time-*T* payoff equal to $M_T(K)$;
- (II) a dynamic trading strategy, which is rebalanced on dates $t_i \in \mathcal{T}$ to maintain $w_i = U(F_0 K) U(F_i K)$ shares of the underlying.

Therefore,

$$E_0^{\mathbb{Q}}\left[\Phi_T\right] = M_0(K).$$

- Static position is long one OTM option
- Dynamic strategy is binary:
 - If starting **below** the barrier, $F_0 \leq K$

$$w_i = -U(F_i - K) = \begin{cases} 0 & \text{if } F_i \le K \\ -1 & \text{if } F_i > K \end{cases}$$

• If starting **above** the barrier, $F_0 > K$

$$w_i = 1 - U(F_i - K) = \begin{cases} 1 & \text{if } F_i \leq K \\ 0 & \text{if } F_i > K \end{cases}$$

イロト イヨト イヨト イヨト

DYNAMIC STRATEGY

- The initial position w_0 is always 0
- Adjusted every time the barrier is crossed over

FIGURE: Dynamic replication strategy: T = 1 year, K = 1.05 or 0.95, and $\Delta t = 1$ month.

э

< A

Proposition: For any T, payoff $M_T(K, T)$ can be perfectly replicated by

- (I) buying *n* 1-period OTM options with strike *K* on dates $t_0, t_1, \ldots, t_{n-1}$;
- (II) a dynamic trading strategy, which is rebalanced on dates $t_i \in \mathcal{T}$ to maintain $u_i = U(F_i K) U(F_0 K)$ shares of the underlying.
 - F.e., a 10-year OTM put (not traded) can be replicated by rolling over ten 1-year OTM options (traded)
 - These 1-year options all have same strike *K* and are OTM on purchase day, but option type (Call or Put) depends on a particular price path

PORTFOLIOS OF CO OPTIONS

Proposition: Any payoff that satisfies AP can be viewed as a portfolio of CO options.

• CO options are building blocks to engineer generalized variance contracts

CONTINUOUS-TIME LIMIT

Proposition: For a general semimartingale F_t , $M_0(K, T) = E_0^Q \left[\frac{1}{2}\Lambda_T(K) + J_T(K)\right]$

• $\Lambda_t(K)$ is local time process (measures time spent at point *K* over interval [0, t]):

$$\Lambda_t(K) = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_0^t \mathbb{1}_{\{K - \epsilon < F_s < K + \epsilon\}} d[F]_s, \quad \text{where} \quad [F]_t = \int_0^t F_s^2 v_s ds$$

- $J_t(K)$ is a pure jump process. At time *s*, it increases if
 - (I) there is a jump, $\Delta F_s = F_s F_{s-} \neq 0$
 - (2) the jump crosses over the barrier, $B(F_{s-}, F_s, K) = 1$

$$J_t(K) = \sum_{s \le t} \left((F_s - K)^+ - (F_{s-} - K)^+ - \mathbb{1}_{\{F_{s-} > K\}} \Delta F_s \right) = \sum_{s \le t} H(F_{s-}, F_s)$$

• Carr and Jarrow (1990) only consider *continuous* semimartingales. $J_t(K)$ accounts for two types of discontinuities: (i) true jumps, or (ii) non-trading periods

- Many potential applications, both for practitioners and academics
- A CO option pays "variance along barrier *K*"
- A useful risk-management tool in its own right. Traders can bet on volatility around special price levels (support, resistance)
 - "Pinning risk" large positions of market makers for a certain strike
 - Useful for mean-reverting assets: VIX, FX, interest rates
- Use CO options as building blocks to engineer generalized variance contracts (say, realized variance swaps)
- Availability of robust replication means market makers will post tight quotes in CO options
- New model-free replication strategy: *n*-year OTM option as a sequence of *n* 1-year options

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Can study jumps: Diffusion shocks and jumps have different contributions to CO payoff Φ_T. Two types of discontinuities:
 - Real jumps
 - Non-trading periods
- Since vanilla options are CO options, can exploit this connection
- New perspective on "expensive put puzzle"
- Risk-premium for variance along different barriers
- Pricing by Monte-Carlo simulations

ロトス部とスピアメピア

3

VALUING VANILLA OPTIONS BY MC SIMULATIONS

- Use Monte-Carlo (MC) to value a vanilla option with no closed-form solution (say, SABR model of Hagan et al (2002))
- Simulate J price histories, compute payoff for each history j, and average them
- Important: Can use *any* CO option to construct an unbiased estimator for vanilla option!
- Take $\Delta t = T/n$, Φ_n^j is CO payoff for history *j*, and

$$\hat{V}_n = \frac{1}{J} \sum_{j=1}^J \Phi_n^j$$

n = 1: traditional MC estimator based on path-independent Φ^j = (K - F^j_T)⁺
 n > 1: new estimator based on path-dependent CO payoff

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

	k = 0.95					k = 1.00				
Model	<i>n</i> =1	<i>n</i> =10	$n = 10^2$	$n = 10^{3}$	AV	<i>n</i> =1	n=10	$n = 10^2$	$n = 10^3$	AV
BS JD SV	1.00 1.00 1.00	2.07 1.68 2.19	2.43 1.84 2.63	2.49 1.86 2.70	3.74 2.25 3.85	1.00 1.00 1.00	2.55 2.01 2.71	3.08 2.26 3.37	3.15 2.29 3.47	6.21 3.31 6.12

TABLE: Relative Efficiency of five MC estimators for a put option under BS, JD, and SV models when T = 1 year, k = 0.95 or 1.00.

- New estimator is the more accurate, the larger *n*
- Relative Efficiency (RE) of \hat{V}_n with respect to \hat{V}_1 is

$$RE(\hat{V}_n; \hat{V}_1) := \frac{E^{\mathbb{Q}}\left[(\hat{V}_1 - V)^2\right]}{E^{\mathbb{Q}}\left[(\hat{V}_n - V)^2\right]} = \frac{\sigma_1^2}{\sigma_n^2}$$

• The "average" estimator:

$$\hat{V}_{AV} = rac{1}{4}\hat{V}_1 + rac{1}{4}\hat{V}_{10} + rac{1}{4}\hat{V}_{100} + rac{1}{4}\hat{V}_{1000}$$

• Gain in efficiency is considerable. For ATM put, \hat{V}_{AV} achieves a given accuracy 6.2 times faster than \hat{V}_1 under BS model

INTUITION

- Traditional estimator
 ^Ŷ₁ uses final price
 ^j_T only it is very "wasteful"
- New estimator V
 n uses n points from each history. Intermediate prices too contain useful information. Estimator is the more efficient, the larger n
- Not obvious. Conditional on *F*_T, why does it help to know intermediate prices?
- Correlation between Φ^j₁ and Φ^j_n is low for high n
- Can do better than \hat{V}_{AV} by using *optimal* weights

CONCLUSION

- Introduce a new class of path-dependent options CO options
- A CO payoff satisfies AP and can be robustly replicated
 - 1) model-free, including jumps
 - 2) holds exactly for *any* partition \mathcal{T} (non-equidistant, non-small Δt)
 - 3) consists of two parts:
 - (I) a static position in vanilla options
 - (II) a discrete dynamic trading in underlying
- CO options generalize vanilla options, leading to many new results and applications for vanilla options
- It is common to use geographical references to name different types of exotic options: *European, American, Bermudan, Canary, Asian, Russian, Parisian, Boston*, etc.

Maybe refer to CO options as Ukrainian?

・ロト ・ ア・ ・ ア・ ・ ア・

Thank you!

Access the paper at

https://papers.ssrn.com/abstract_id=4592789

