
Julia as a Compiler for R Packages

Michael Kane - MD Anderson Cancer Center, Telperian Inc.



Why do I use R primarily?

R minimizes my development time
Unmatched in the following:

▶ syntactic ergonomics and language extensibility
▶ polyglot solution development - R for orchaestrating

computations
▶ package ecosystem for some domains (statistics, clinical trials,

etc.)

Ergonomics mean that we sometimes trade execution time for
development time



Why I reconsidered julia

From the TheCedarPrince/InteroperableJuliaBinaries ] and juliac
scripts from here using 1.12.0-DEV.1314 (2024-10-06) at commit
ab6df86f77b.

module JuliaTest

Base.@ccallable function add_r(a::Ptr{Csize_t},
b::Ptr{Csize_t},
out::Ptr{Csize_t})::Csize_t

a = unsafe_load(a)
b = unsafe_load(b)
out = unsafe_wrap(Array,

out::Ptr{Csize_t},
1::Int)

out[1] = a + b
end

end

https://github.com/TheCedarPrince/InteroperableJuliaBinaries
https://jbytecode.github.io/juliac/


Compile it and call it from R

bash> julia +nightly juliac.jl --output-lib simple.so
--compile-ccallable --experimental --trim simple.jl

bash> ls -lah simple.so
-rwxr-xr-x@ 1 mike staff 1.0M Apr 11 12:09 simple.so

bash> LD_LIBRARY_PATH=. LD_PRELOAD=simple.so R
R> dyn.load("simple.so")
R> res <- .C('add_r',

a = as.integer(2),
b = as.integer(2),
output = c(as.integer(0)))

R> res$output
4



Scaling Out vs. Up (Martin Schultz)

Scaling out (horizontal scalability, embarrasingly parallel problems)
- perform the same computation on different data.
Scaling up (vertical scalability) make a single computation faster.

▶ Horizontal scalabling includes parallel apply functions,
foreach, furrr, etc.

▶ Vertical scaling include writing better R code, C/C++, Rcpp,
torch, etc.

Vertical scalability often means external computing solutions.



Why Julia how does it fit?

▶ Syntax is somewhere between R and Python but supports
low(er)-level programming.

▶ It’s fast - sometimes.
▶ Great metaprogramming via macros.
▶ Optional typing and built-in multiple dispatch.
▶ It can be compiled
▶ It has great GPU development tools

We (R-developers) should consider it a great option for scaling up.



Predictive distribution of clinical trial: R code

library(tibble)

# Function to simulate survival data for a clinical trial
simulate_clinical_trial <- function(n_subjects, hazard_ratio, follow_up_time) {

lambda_control <- 0.05 # Hazard rate for the control group

lambda_treatment <- lambda_control / hazard_ratio

treatment <- rbinom(n_subjects, 1, 0.5) # 50% treated

survival_times <- numeric(n_subjects)
event_indicators <- integer(n_subjects)

for (i in 1:n_subjects) {
lambda <- if (treatment[i] == 1) lambda_treatment else lambda_control

t <- rexp(1, rate = lambda)
survival_times[i] <- min(t, follow_up_time) # Apply censoring
event_indicators[i] <- ifelse(t <= follow_up_time, 1, 0)

}

tibble(
SubjectID = 1:n_subjects,
Treatment = treatment,
SurvivalTime = survival_times,
Event = event_indicators

)
}



Predictive distribution of clinical trial: Julia code
using Random, Distributions, DataFrames, Survival

function simulate_clinical_trial(n_subjects::Int, hazard_ratio::Float64,
follow_up_time::Float64)

�_control = 0.05 # Hazard rate for the control group

�_treatment = �_control / hazard_ratio # Adjust hazard by the hazard ratio

treatment = rand(Bernoulli(0.5), n_subjects) # 50% treated

survival_times = Float64[]
event_indicators = Int[] # 1 = event occurred, 0 = censored

for i in 1:n_subjects
# Assign hazard based on treatment group
� = treatment[i] == 1 ? �_treatment : �_control

# Generate survival time using exponential distribution
t = rand(Exponential(�))
push!(survival_times, min(t, follow_up_time)) # Apply censoring
push!(event_indicators, t <= follow_up_time ? 1 : 0)

end

DataFrame(
SubjectID = 1:n_subjects,
Treatment = treatment,
SurvivalTime = survival_times,
Event = event_indicators

)
end



Simulation

Run for 1,000,000 subjects/patients.

Language Lines of code First Run (sec) Second Run (sec) Speedup

R 50 1.638 1.459 1.123
Julia 50 1.275 0.054 23.611



Summary

Julia is a great option for scaling up computations.
We are about to see much better shared object support.

▶ Can already (kind of) use .C
▶ Reflection of SEXP is available in .Call (code from Doug

Bates)
▶ Julia becomes a viable compiler target for R packages.


