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Overview
• We wish to assess the risk of a static or optimized portfolio of M assets.

• Let  𝒀𝒀 = [𝒚𝒚𝟏𝟏,𝒚𝒚𝟐𝟐, … ,𝒚𝒚𝑴𝑴] be a sample of n joint historical observations on M 
variables with 𝒀𝒀~𝑴𝑴𝑴𝑴(𝑴𝑴𝑴𝑴,𝑫𝑫𝑴𝑴) with marginal structure MS and dependency 
structure DS.

• Common (McNeil, Frey, Embrechts (2025), Hull (2018)) for financial 
institutions to use the data in the Y matrix with various  "Historical" 
approaches to estimate potential future VaR and cVaR levels.



Historical Procedures
o Advantages.

 Nonparametric and distribution free.
 Does not require the estimation/modeling of each asset's 

marginal distribution.
 Does not require the estimation/specification of the dependency 

structure.
 Relatively easy to use.
 Can use subsamples to estimate stressed VaR and cVaR. 

o Disadvantages.
 Future outcomes may differ from past outcomes.
 Both marginals and dependencies tend to vary over time

 See other discussions by Butler and Schachter (1996)



Historical Procedures

• We present a "non-parametric" hybrid "historical-

modeling" approach that utilizes historical data Y but 

generates marginal outcomes and dependencies not 

observed in the historical data.

o Non-parametric estimation of and simulating from each marginal 
using kernel procedures similar to Butler and Schachter (1996)

o Binds the marginal's together using "historical copula"
o Historical copulas are related to empirical copulas but are (in our 

opinion) more flexible and often generate more consistent results.



Marginal Simulation Procedures
• Due to time constraints we are going to "flash through" the procedures 

with some R scripts and examples.
– We want N >= 10000 joint potential outcomes for each of M 

variables
– Historical Y has n = 53 observations
– nreps = floor(N/n) + 1 = 189 for this example
– N = nreps * n = 10017  for this example 

R script
YI = matrix(0,N,M) # Simulated Data Matrix
for(j in 1:M){

tmp = density(Y[,j])
YI[, j] = sample(tmp$x, N, prob=tmp$y,replace=T) 

} # end loop on j



Data & Simulated Marginal 
(Note the Empirical Dependency Structure)



Construct the “Historical Copula”

𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 =

𝒀𝒀
𝒀𝒀
⋮
𝒀𝒀

• Note: HCOP is not strictly a copula but we will use variations 
of HCOP to reorder the ranks in the simulated YI data.

• If N is a multiple of n, Y and HCOP will have the same marginal 
and cross-sectional dependency structure and “correlations”.

• Each “block” of HCOP will also have the same marginal and 
across variable serial dependency as Y   



Using HCOP 
rankorder = function(Y, RM){

…  # some error and dimension checking
for(j in 1:ncol(Y){
ys = sort(Y[,j])
Y[,j] = ys[rank(RM[,j], ties.method=‘first’)]

}   # end loop on j
Y

} # end function rankorder

YD = rankorder(YI,HCOP)  



Using HCOP 
Without smoothing HCOP, using HCOP to bind the YI marginals 
is equivalent to using the empirical copula in the R package 
‘copula’ (Hofert, Kojadadinovic, Maechler, Yan) (2025)



Smoothing HCOP 
HCOP can be smoothed is numerous ways. 
The following uses independent normal variates for smoothing

R script:
sdevs = apply(HCOP,2,sd)
sscale = 0.25
SHCOP = HCOP
for(j in 1:ncol(SHCOP)) { 

SHCOP[,j] = HCOP[,j] + sscale*sdevs[j]*rorm(N)
}  # end loop on j

YDS = rankorder(YI,SHCOP)



Binding with Smoothed HCOP



Smoothed HCOP vs Smoothed ECOP 



HCOP and Multivariate Normality  
HCOP can be used with large number M of marginals to 
implement ImanConover type process (i.e. bind YI with a 
normal copula) without having to estimate and decompose the 
covariance matrix or multiply matrices)
R script:
HCOPN = HCOP; J = 100
for(j in 2:J){
HCOPN = HCOPN = HCOP[sample(1:N,N,replace=F),]

} # end loop on J 
HCOPN = HCOPN/sqrt(J)  # not strictly needed 

YDN = rankorder(YI,HCOPN)



HCOP and Multivariate Normality  
By the Multivariate Central Limit Theorem 
HCOPN ~ MVN(mean(Y), cov(Y)) since Y and HCOP 
have the same mean and covariance matrix.

As a result the marginals in YDN will be bound 
together with a normal copula with correlations
cor(Y).    



HCOP and HCOPN qqnorm plots   



HCOP and HCOPN Rank Plots   



HCOP and HCOPN M Asset Times   
HCOP Computation Times to Estimate and Simulate 10000 Joint Observations of 

M Variables Using Marginal Kernal Smoothing and HCOP Procedures.

Computation Times to Simulate 10000 Correlated Normal Observations of M 
Variables Using Spectral / Cholesky Decomposition Versus Modified  HCOP 

Procedures. (Using open.blas with R)



Smoothed HCOP and Serial Dependency 



Smoothed HCOP and Cross Sectional/Serial 
Dependency 

HCOP procedures can also be utilized in various 
“structural applications” to non- parametrically model 
and simulate potential  joint errors from multi 
equation, panel, time series, or vector autoregressive 
regression models. 



Using HCOP

HCOP procedures are:
• Largely non-parametric but can be combined with 

parametric models.
• Can accommodate large number M of joint variables.
• Fast: Time grows linearly with M
• Can be used with MV Normal Copula binding while 

preserving but not having to compute all (𝑴𝑴𝟐𝟐−𝑴𝑴)/𝟐𝟐
historical correlations.

• Flexible
• Monograph and Code available from author
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