SIMULATING MULTIVARIATE VARIABLES USING NON-PARMAMETRIC SMOOTHED HISTORICAL DATA PROCEDURES

Joseph Atwood Montana State University - Bozeman

Overview

- We wish to assess the risk of a static or optimized portfolio of M assets.
- Let $Y = [y_1, y_2, ..., y_M]$ be a sample of n joint historical observations on M variables with $Y \sim MV(MS, DS)$ with marginal structure MS and dependency structure DS.
- Common (McNeil, Frey, Embrechts (2025), Hull (2018)) for financial institutions to use the data in the Y matrix with various "Historical" approaches to estimate potential future VaR and cVaR levels.

Historical Procedures

- Advantages.
 - Nonparametric and distribution free.
 - Does not require the estimation/modeling of each asset's marginal distribution.
 - Does not require the estimation/specification of the dependency structure.
 - Relatively easy to use.
 - Can use subsamples to estimate stressed VaR and cVaR.
- Disadvantages.
 - Future outcomes may differ from past outcomes.
 - Both marginals and dependencies tend to vary over time
 - See other discussions by Butler and Schachter (1996)

Historical Procedures

- We present a "non-parametric" hybrid "historicalmodeling" approach that utilizes historical data Y but generates marginal outcomes and dependencies not observed in the historical data.
 - Non-parametric estimation of and simulating from each marginal using kernel procedures similar to Butler and Schachter (1996)
 - $\circ~$ Binds the marginal's together using "historical copula"
 - Historical copulas are related to empirical copulas but are (in our opinion) more flexible and often generate more consistent results.

Marginal Simulation Procedures

- Due to time constraints we are going to "flash through" the procedures with some R scripts and examples.
 - We want N >= 10000 joint potential outcomes for each of M variables
 - Historical Y has n = 53 observations
 - nreps = floor(N/n) + 1 = 189 for this example
 - N = nreps * n = 10017 for this example

<u>R script</u>

YI = matrix(0,N,M) # Simulated Data Matrix

for(j in 1:M){

tmp = density(Y[,j])

YI[, j] = sample(tmp\$x, N, prob=tmp\$y,replace=T)

} # end loop on j

Data & Simulated Marginal

(Note the Empirical Dependency Structure)

Construct the "Historical Copula"

$$HCOP = \begin{bmatrix} Y \\ Y \\ \vdots \\ Y \end{bmatrix}$$

- Note: HCOP is not strictly a copula but we will use variations of HCOP to reorder the ranks in the simulated YI data.
- If N is a multiple of n, Y and HCOP will have the same marginal and cross-sectional dependency structure and "correlations".
- Each "block" of HCOP will also have the same marginal and across variable serial dependency as Y

Using HCOP

```
rankorder = function(Y, RM){
```

```
... # some error and dimension checking
for(j in 1:ncol(Y){
```

```
ys = sort(Y[,j])
```

```
Y[,j] = ys[rank(RM[,j], ties.method='first')]
```

```
} # end loop on j
```

```
Y
```

} # end function rankorder

YD = rankorder(YI, HCOP)

Using HCOP

Without smoothing HCOP, using HCOP to bind the YI marginals is equivalent to using the empirical copula in the R package 'copula' (Hofert, Kojadadinovic, Maechler, Yan) (2025)

Smoothing HCOP

HCOP can be smoothed is numerous ways.

The following uses independent normal variates for smoothing

R script:

```
sdevs = apply(HCOP,2,sd)
```

```
sscale = 0.25
```

```
SHCOP = HCOP
```

```
for(j in 1:ncol(SHCOP)) {
```

```
SHCOP[,j] = HCOP[,j] + sscale*sdevs[j]*rorm(N)
```

```
} # end loop on j
```

YDS = rankorder(YI,SHCOP)

Binding with Smoothed HCOP

Bound with Smoothed HCOP

Smoothed HCOP vs Smoothed ECOP

Bound with HCOP

Bound with ECOP-beta

Bound with Smoothed HCOP

HCOP and Multivariate Normality

HCOP can be used with large number M of marginals to implement ImanConover type process (i.e. bind YI with a normal copula) without having to estimate and decompose the covariance matrix or multiply matrices)

```
R script:
```

```
HCOPN = HCOP; J = 100
```

```
for(j in 2:J){
```

```
HCOPN = HCOPN = HCOP[sample(1:N,N,replace=F),]
```

} # end loop on J

```
HCOPN = HCOPN/sqrt(J) # not strictly needed
```

```
YDN = rankorder(YI,HCOPN)
```


HCOP and Multivariate Normality

By the Multivariate Central Limit Theorem HCOPN ~ MVN(mean(Y), cov(Y)) since Y and HCOP have the same mean and covariance matrix.

As a result the marginals in YDN will be bound together with a normal copula with correlations cor(Y).

HCOP and HCOPN qqnorm plots

HCOP and HCOPN Rank Plots

MONTANA STATE UNIVERSITY

HCOP and HCOPN M Asset Times

HCOP Computation Times to Estimate and Simulate 10000 Joint Observations of M Variables Using Marginal Kernal Smoothing and HCOP Procedures.

Μ	1000	2000	4000	8000	16000	32000
Seconds	2.34	4.56	10.27	17.95	36.5	73.98

<u>Computation Times to Simulate 10000 Correlated Normal Observations of M</u> <u>Variables Using Spectral / Cholesky Decomposition Versus Modified HCOP</u> <u>Procedures. (Using open.blas with R)</u>

	Co					
Μ	1000	2000	4000	8000	16000	32000
Spectral/Choletsky	0.7	1.6	6.7	45.4	370.1	2893.6
НСОР	1.4	3.1	6.1	11.6	24.8	50.7

Smoothed HCOP and Serial Dependency

Smoothed HCOP and Cross Sectional/Serial Dependency

HCOP procedures can also be utilized in various "structural applications" to non- parametrically model and simulate potential joint errors from multi equation, panel, time series, or vector autoregressive regression models.

Using HCOP

HCOP procedures are:

- Largely non-parametric but can be combined with parametric models.
- Can accommodate large number M of joint variables.
- Fast: Time grows linearly with M
- Can be used with MV Normal Copula binding while preserving but not having to compute all $(M^2-M)/2$ historical correlations.
- Flexible
- Monograph and Code available from author

References

Atwood, J. (2025) *Modeling Multivariate Variables using Smoothed Historical Data and Non-Parametric Procedures.* Working paper. Department of Agricultural Economics and Economics. Montana State University. Bozeman, MT

Butler, J. and B. Schachter. (1996) *Improving Value-at-Risk Estimates by Combining Kernal Estimation with Historical Simulation*. Office of the Comptroller of the Currency, E&PA Working Paper 96-1, August 1996

Hull, J. (2023). *Risk Management and Financial Institutions (6th)*. John Wiley & Sons. Hoboken, NJ.

McNeil. A.J., Frey, R. and Embrechts, P. (2015) *Quantitative Risk Management Concepts, Techniques and Tools (Revised).* Princeton University Press, Princeton, NJ.

