
From Regression to Neural Networks:
Evaluating AI Models for Real-World Financial Trading
Strategies

Open Source Quantitative Finance
Research Conference

Chicago, IL – April 11-12, 2025

Davide Pandini
PhD, CMT, MFTA, CFTe, CSTA

Disclaimer

"… There are three types of lies:
lies, damn lies and statistics …"

Benjamin Disraeli (1804-1881)

Prime Minister of Great Britain from 1874 to 1880

Prediction is very difficult …
especially if it’s about the

financial markets!

"… Prediction is very difficult, especially
if it’s about the future! …“

Niels Bohr (1885-1962)

Danish physicist, Nobel Prize in Physics (1922)

Data analysis and backtesting

1 Jan. 1997 – 31 Dec. 2017

Training Range: from Jan 01,
1997, till Dec 31, 2017
(5,250 observations, ~76%)

1 Jan. 2018 – 31 Dec. 2020

Testing Range: from Jan 01,
2018, till Dec 31, 2020
(754 observations, ~11%)

1 Jan. 2021 – 31 Aug. 2024

Trading Range: from Jan 01,
2021, till Aug 31, 2024
(919 observations, ~13%)

S&P 500 (SPY) historical data span
and market cycles: 27 years and 8
months (Jan 1997 – Aug 2024) with
6,923 observations

Backtesting strategy

Global Financial Crisis COVID-19 Sell-off

Capturing market events

Feature 2008 Global Financial Crisis 2020 COVID-19 Sell-off

Cause Housing bubble, financial instability Global pandemic and lockdowns

Market Decline Speed Gradual, multi-month decline Sharp, 1-month drop

Depth of Decline ~57% (S&P 500) ~34% (S&P 500)

Recovery Time ~5 years ~5-6 months

Policy Response Bailouts, QE, TARP, regulatory changes Rapid fiscal and monetary stimulus

Economic Impact Deep recession, high unemployment Sharp but brief recession

Investor Sentiment Prolonged caution Rapid rebound

Long-term Impact Regulatory reforms, cautious investing Digital transformation, resilience

Backtesting window selection

• Include both bear and bull markets in
backtesting for holistic strategy
evaluation to avoid skewed results if
only one market regime is considered

• Consistent backtesting window sizes
for reliable performance assessment

• Log daily returns (for stationarity and
normality) highlighting volatility
clusters (e.g., GFC and COVID crash)

• Distribution of cumulative returns to
illustrate returns behavior and growth
over time (e.g., long bull market post
2009)

Jarque-Bera normality
test

• The JB normality test statistic (30144) is
larger than the critical value (i.e., six), then
the null hypothesis of the log daily returns
normal distribution is rejected

• The p-value from the chi-squared
distribution with df=2 of the JB test statistic
is ~0.0 then the null hypothesis of normality
is rejected with 95% of statistical confidence

• The Jarque-Bera test confirms that the log
daily returns do not follow a normal
distribution 𝐽𝐵 = 𝑛 ∙

𝑆2

6
+

𝐾 − 3 2

24

Feature selection methodology

• S&P 500 lagged 9-day returns chosen as features to capture short-term
momentum/reversion

• Temporal Dependencies: Lagging captures short-term memory in financial
data, where recent movements influence near-term future movements

• Mean Reversion & Patterns: If markets exhibit mean reversion or
momentum, lagged returns may help detect these patterns

• Practical Precedent: Box-Jenkins methods in the 1970s formalized using
lags in ARIMA models. Nobel laureates like Robert F. Engle (ARCH models)
contributed to understanding when lagged data can hold predictive power

• Widespread Use: Traders use lagged indicators (e.g., yesterday’s return,
last week’s trend) to inform strategies

Multicollinearity assessment

Feature selection techniques

Selected features
for modeling

• A parallel set of models is built using
PCA components (likely a few principal
components capturing most variance
from the 9 lags) to compare against the
SBF approach

• By testing both SBF vs. PCA we evaluate
if dimensionality reduction improves
model performance or efficiency

• This addresses whether to focus on
interpretability (keeping actual lag
features SBF) or potential accuracy
gains (using abstract components PCA)

SBF offers a balanced middle ground: more
features than LASSO to avoid underfitting and
less features than an all-inclusive approach

Forecasting models benchmark

Model Strengths Weaknesses Best Use Cases

MLR Simple, fast, interpretable Limited to linear relationships
Small/moderate-sized datasets

Interpretability crucial

XGBoost
High accuracy

Handles complex interactions

Interpretability issues

Tuning complexity

Structured data

Predictive accuracy

SVM
High-dimensional

Nonlinear boundaries

Complex tuning

Slower training

Nonlinear

Moderate-sized datasets

ANN Flexible nonlinear modeling
Overfitting risk

Low explainability

Hidden nonlinear patterns

Adequate data

DNN Learns deep/complex patterns
High computational needs

Severe overfitting

Large datasets

Complex patterns (images)

Model
evaluation

• Training vs. Testing: All models were trained on the 1997–
2017 data and then evaluated in 2018–2020 test data to
check generalization

• This was a supervised regression task, where models
learned to predict next-day returns from lagged returns

• In walk-forward (time-series) cross-validation, models are
re-trained and tested on expanding/rolling windows,
preserving time order

Forecasting accuracy metrics

Model Predictor Set RMSE MAE MAPE MASE
SBF 0.01470 0.00895 113.02260 0.68060
PCA 0.01483 0.00899 113.70940 0.68393
SBF 0.01457 0.00889 114.24760 0.67645
PCA 0.01629 0.00932 112.33880 0.70934
SBF 0.01477 0.00896 125.63300 0.68151
PCA 0.01473 0.00896 130.73850 0.68150
SBF 0.01467 0.00893 112.88810 0.67978
PCA 0.01484 0.00899 114.67790 0.68409
SBF 0.01471 0.00895 112.90700 0.68062
PCA 0.01482 0.00899 113.93390 0.68362

Deep Neural Network
(DNN)

Scale Dependent Scale Independent

Multiple Linear Regression

Extreme Gradient Boosting
(XGBoost)
Support Vector Machine
(RBF)
Artificial Neural Network
(ANN)

• The numerical results are computed on the training set
• Models are benchmarked against a random walk baseline

Forecasting model training runtime

Forecasting model training runtime

Algorithm Runtime (Seconds) Delta Runtime (Percent)
Multiple Linear Regression (SBF) 1.32160 Baseline

Multiple Linear Regression (PCA) 2.18499 65.30%

XGBoost (SBF) 3.60908 173.10%

XGBoost (PCA) 4.45782 237.30%

SVM (SBF) 8.86284 570.60%

SVM (PCA) 10.55498 698.70%

ANN (SBF) 5.38184 307.20%

ANN (PCA) 14.60274 1004.90%

DNN (SBF) 5.00221 278.50%

DNN (PCA) 15.25054 1053.90%

Forecasting accuracy takeaways

• Selection by Filtering (SBF) yields better or comparable forecasting
accuracy than Principal Component Analysis (PCA) in the training
range
• This suggests that when the predictors show low multicollinearity the

dimensionality reduction of PCA is not significantly beneficial

• The forecasting accuracy metrics (RMSE, MAE, MAPE, MASE) were
relatively close across all five models (Multiple Linear Regression,
XGBoost, SVM, ANN, DNN) and both predictor sets

• The traditional Multiple Linear Regression (MLR) model achieved
comparable levels of forecasting accuracy to the more advanced AI-
driven models, but with a much lower runtime

Forecasting accuracy: testing set

SBF PCA

Forecasting accuracy: testing set

SBF PCA

Forecasting accuracy metrics: testing set

Model Predictor Set RMSE MAE MAPE MASE

SBF 0.014703 0.008945 113.027546 0.680603

PCA 0.014831 0.008989 113.709691 0.683929

SBF 0.014457 0.008856 111.008100 0.673793

PCA 0.015934 0.009278 122.203322 0.705939

SBF 0.014767 0.008951 125.562054 0.681048

PCA 0.014728 0.008957 130.755548 0.681513

SBF 0.014703 0.008945 113.111680 0.680602

PCA 0.014828 0.008987 112.700635 0.683763

SBF 0.014776 0.008967 112.215480 0.682268

PCA 0.014832 0.008989 114.179355 0.683921

Scale Dependent Scale Independent

DNN

MLR

XGBoost

SVM

ANN

Forecasting
accuracy
metrics:

testing set

Trading strategy: design and implementation

• Signal generation: Look at the predicted next-
day return direction relative to prior prediction

• A buy signal is triggered when a model
predicts a shift from a negative to a positive
return, suggesting an upward movement

• A sell signal is issued when a shift from a
positive to a negative return is forecasted,
indicating a potential downturn

• A hold signal is maintained when no
significant change in return direction is
predicted, implying no trading action

• The strategy tries to capture market reversals
by acting when the model predicts a change in
trend direction

Benefits of simplicity

• Less risk of overfitting strategy rules
to past

• Easier to attribute performance to
model vs. complicated rule synergy

• Lower chance of capturing noise: A
simple reduces noise and overfitting

• Focus on key patterns: Basic reversal
targets fundamental market
behavior (trend changes) which are
relatively stable phenomena

• Ease of interpretation: Traders can
understand why a signal happened

Trading strategy:
design and implementation

• Avoiding Look-Ahead Bias
• Shift Signals by One Day: Any signal generated on day t (based on info up

to t) is executed at the open of day t+1. This ensures the model is not
trading on information it could not have known (like using day t’s closing
price to trade on day t – which is impossible in real time)

• By shifting forward, any inadvertent peeking at future data when
backtesting is eliminated. This simulates how yesterday’s predictions are
used for today’s trades

• Prevent inflated performance due to hindsight

• Uniform Application
• All models' signals (buy/sell/hold) are generated the same way, so

differences in results are due to model forecasts, not strategy differences

Data requirements

• Amount of Data: ML algs typically require large amounts of
data to train effectively. If your dataset is limited, a NN might
not perform better than a simpler model

• Feature Engineering: Multiple regression models can benefit
significantly from carefully engineered features, potentially
matching or exceeding the performance of a ML alg

• Interpretability: Multiple regression models are more
interpretable, allowing for better understanding and
validation of the relationships captured

• Black Box Nature of NNs: The complexity of NNs can make it
difficult to interpret the model's decisions, which is a
disadvantage in fields where understanding the model is
crucial

Computational
resources and
mixed results

• Training Time: NNs require more
computational power and time to
train

• Optimization Challenges: They can
be more sensitive to hyperparameters
and require more careful tuning

• Empirical Evidence: Studies
comparing linear models and NNs for
financial forecasting have produced
mixed results. In some cases, simpler
models perform just as well or better

Trading strategy: design and implementation

• After models are trained and tested, each model is used (without
retraining) to generate predictions on the Trading Range (2021–2024)

• XGBoost had best forecast accuracy, so one might expect it to generate the
best trading returns

• Although XGBoost achieved highest forecasting accuracy, for completeness
all models are evaluated in trading

• The results will show if best forecast accuracy translates to best trading
performance (not always the case, because small accuracy differences
might not matter or might be offset by other factors like consistency or
variance of errors)

• Benchmark Buy-and-Hold on SPY for the same period to compare passive
vs. model-driven approach

MLR

XGBoost

SVM

ANN

DNN

Comparative analysis

Trading results

Why did MLR do well?

• MLR vs. AI Models: Surprisingly, Multiple Linear Regression’s trading performance
was among the top

• It nearly matched deep learning in return and Sharpe, and equally minimized risk
(volatility, drawdown)

• The S&P 500 might have a lot of linear auto-correlation structure (e.g., mild
momentum or mean reversion that a linear model can catch). The additional
complexity of non-linear models did not add much extra predictive power
(consistent with the similar accuracy metrics)

• MLR, being stable, might not overfit, thus giving consistent signals, whereas more
complex models could occasionally predict spurious reversals

• Trading frequency: If MLR was a bit less aggressive in flipping signals than some AI
models (like XGBoost may react to slight changes), it might have fewer trades,
hence lower cost impact and steadier performance

• Cost-aware strategy design is crucial!

Practical implications for traders

Complex Models vs Simpler: If transaction costs are non-trivial, the
complexity might not pay off. A simpler, perhaps slower-moving model (like
regression) might yield nearly as good net performance with fewer trades

Interpretability and Trust: Traders might prefer MLR or simpler models
if they perform similarly, because understanding why a signal is
generated is easier (no black-box). This can be important in high-stakes
financial decisions

Market Regime Consideration: In calm trending times, the simple
model might do just fine. The AI models might prove their worth in
highly volatile or complex pattern times, but those are not so frequent.
So day-to-day, simpler could be more robust

When to
prefer
simpler
models

• Computational resources are limited
(we see large runtime differences)

• Need for quick decisions (low latency,
where simpler models shine)

• Market is efficient enough that linear
models capture most signals

• Interpretability or regulatory necessity

• The strategy must be easily
adjusted/communicated

R packages

Library Usage / Purpose
caret Core engine for train, tuning, and resampling - allows for model comparison and cross-validation
corrplot Creates visual correlation matrices (heatmaps), helping spot multicollinearity among variables
forecast Provides time series forecasting functions and 'accuracy()' for calculating RMSE, MAE, MAPE, etc.
kernlab Implements kernel-based machine learning methods (SVM), used with the RBF kernel (svmRadial)
neuralnet Builds and trains feedforward neural networks (ANN / DNN), specifying hidden layers, activation functions, etc.
PerformanceAnalytics Performance and risk analysis tools for returns, drawdowns, charts, Sharpe ratios, and annualized metrics
quantmod Simplifies financial data extraction from sources like Yahoo! and provides quick charting and transformations
tseries Time-series tools (e.g., jarque.bera.test for normality checks), common in finance and econometrics
xgboost Trains Extreme Gradient Boosting models (gradient-boosted decision trees) for structured data
writexl Exports data frames to Excel (.xlsx) files, useful for saving outputs or performance logs
car Contains additional regression diagnostics, including vif() for checking multicollinearity
ggplot2 Creating data visualizations (bar charts, line charts, etc.)

Final takeaway

• Traders and financial analysts should evaluate
the trade-off between model complexity and
practical benefits

• Simpler approaches often work surprisingly
well and are easier to manage, whereas
advanced models need to prove their worth
through tangible improvements in predictive
power or trading outcomes before displacing
the trusty linear regression

Manual driving vs
autonomous driving

A metaphor for multiple regression vs neural
networks and deep learning

R code snippets

R code snippets

Univariate Filters
sbfctrlt <- sbfControl(functions=lmSBF)
sbft <- sbf(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,sbfControl=sbfctrlt)

Recursive Feature Elimination
rfectrlt <- rfeControl(functions=lmFuncs)
rfet <- rfe(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,rfeControl=rfectrlt)

Predictor Features Selection Embedded Methods
lassot <- train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,method="lasso")
predictors(lassot)

eXtreme Gradient Boosting Regression training
xgbmta <- train(rspy~rspy1+rspy2+rspy5,data=rspyt,method="xgbTree")
xgbmtb <-
train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,method="xgbTree",preProcess="pca")

R code snippets

Intermediate testing step as newdata needs to be same length as training range
xgbmpa <- predict.train(xgbmta,newdata=rspyp)
xgbmpb <- predict.train(xgbmtb,newdata=rspyp)

Limited to testing range
xgbmdfa <- cbind(index(rspyp),as.data.frame(xgbmpa))
xgbmla <- xts(xgbmdfa[,2],order.by=as.Date(xgbmdfa[,1]))
xgbmfa <- window(xgbmla,start="2018-01-01")
xgbmdfb <- cbind(index(rspyp),as.data.frame(xgbmpb))
xgbmlb <- xts(xgbmdfb[,2],order.by=as.Date(xgbmdfb[,1]))
xgbmfb <- window(xgbmlb,start="2018-01-01")

R code snippets

Artificial Neural Network Regression training

annta <-
train(rspy~rspy1+rspy2+rspy5,data=rspyt,method="neuralnet",trContr
ol=tsctrlt)

anntb <-
train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,
data=rspyt,method="neuralnet", preProcess="pca",trControl=tsctrlt)

DNN Regression training

dnnta <-
train(rspy~rspy1+rspy2+rspy5,data=rspyt,method="neuralnet",trContro
l=tsctrlt)

dnntb <-
train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,d
ata=rspyt,method="neuralnet",preProcess="pca",trControl=tsctrlt)

R code snippets

R code snippets
Deep Neural Network Regression trading signals
dnnsig <- Lag(ifelse(Lag(dnns)<0&dnns>0,1,ifelse(Lag(dnns)>0&dnns<0,-1,0)))
dnnsig[is.na(dnnsig)] <- 0
Deep Neural Network Regression trading positions
dnnpos <- ifelse(dnnsig>1,1,0)
for(i in 1:length(dnnpos)) {
 dnnpos[i] <- ifelse(dnnsig[i]==1,1,
 ifelse(dnnsig[i]==-1,0,
 dnnpos[i-1]))}
dnnpos[is.na(dnnpos)] <- 0

Multiple Linear Regression Method Trading Strategy Performance Comparison
lmret <- lmpos*rspys[,1]
lmretc <- ifelse(
 (lmsig==1|lmsig==-1) & lmpos!=Lag(lmpos),
 (lmpos*rspys[,1])-0.001,
 lmpos*rspys[,1])
lmcomp <- cbind(lmret,lmretc,rspys[,1])
colnames(lmcomp) <- c("lmret","lmretc","rspy")
table.AnnualizedReturns(lmcomp)
charts.PerformanceSummary(lmcomp,main="Multiple Linear Regression Method Daily Returns Comparison")

	Slide 1: From Regression to Neural Networks: Evaluating AI Models for Real-World Financial Trading Strategies Open Source Quantitative Finance Research Conference Chicago, IL – April 11-12, 2025
	Slide 2: Disclaimer
	Slide 3
	Slide 4: Data analysis and backtesting
	Slide 5
	Slide 6: Capturing market events
	Slide 7: Backtesting window selection
	Slide 8
	Slide 9: Jarque-Bera normality test
	Slide 10: Feature selection methodology
	Slide 11: Multicollinearity assessment
	Slide 12: Feature selection techniques
	Slide 13: Selected features for modeling
	Slide 14: Forecasting models benchmark
	Slide 15: Model evaluation
	Slide 16: Forecasting accuracy metrics
	Slide 17: Forecasting model training runtime
	Slide 18: Forecasting model training runtime
	Slide 19: Forecasting accuracy takeaways
	Slide 20: Forecasting accuracy: testing set
	Slide 21: Forecasting accuracy: testing set
	Slide 22: Forecasting accuracy metrics: testing set
	Slide 23
	Slide 24: Trading strategy: design and implementation
	Slide 25: Benefits of simplicity
	Slide 26: Trading strategy: design and implementation
	Slide 27: Data requirements
	Slide 28: Computational resources and mixed results
	Slide 29: Trading strategy: design and implementation
	Slide 30: MLR
	Slide 31: XGBoost
	Slide 32: SVM
	Slide 33: ANN
	Slide 34: DNN
	Slide 35: Comparative analysis
	Slide 36: Trading results
	Slide 37: Why did MLR do well?
	Slide 38: Practical implications for traders
	Slide 39: When to prefer simpler models
	Slide 40: R packages
	Slide 41: Final takeaway
	Slide 42: Manual driving vs autonomous driving
	Slide 43
	Slide 44: R code snippets
	Slide 45: R code snippets
	Slide 46: R code snippets
	Slide 47: R code snippets
	Slide 48
	Slide 49: R code snippets

