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Disclaimer

"… There are three types of lies: 
lies, damn lies and statistics …"

Benjamin Disraeli (1804-1881)

Prime Minister of Great Britain from 1874 to 1880



Prediction is very difficult … 
especially  if it’s about the 

financial markets!

"… Prediction is very difficult, especially 
if it’s about the future! …“
 

Niels Bohr (1885-1962)

Danish physicist, Nobel Prize in Physics (1922) 



Data analysis and backtesting

1 Jan. 1997 – 31 Dec. 2017

Training Range: from Jan 01, 
1997, till Dec 31, 2017
(5,250 observations, ~76%)

1 Jan. 2018 – 31 Dec. 2020

Testing Range: from Jan 01, 
2018, till Dec 31, 2020
(754 observations, ~11%)

1 Jan. 2021 – 31 Aug. 2024

Trading Range: from Jan 01, 
2021, till Aug 31, 2024
(919 observations, ~13%) 

S&P 500 (SPY) historical data span 
and market cycles: 27 years and 8 
months (Jan 1997 – Aug 2024) with 
6,923 observations

Backtesting strategy



Global Financial Crisis COVID-19 Sell-off



Capturing market events

Feature 2008 Global Financial Crisis 2020 COVID-19 Sell-off

Cause Housing bubble, financial instability Global pandemic and lockdowns

Market Decline Speed Gradual, multi-month decline Sharp, 1-month drop

Depth of Decline ~57% (S&P 500) ~34% (S&P 500)

Recovery Time ~5 years ~5-6 months

Policy Response Bailouts, QE, TARP, regulatory changes Rapid fiscal and monetary stimulus

Economic Impact Deep recession, high unemployment Sharp but brief recession

Investor Sentiment Prolonged caution Rapid rebound

Long-term Impact Regulatory reforms, cautious investing Digital transformation, resilience



Backtesting window selection

• Include both bear and bull markets in 
backtesting for holistic strategy 
evaluation to avoid skewed results if 
only one market regime is considered

• Consistent backtesting window sizes 
for reliable performance assessment

• Log daily returns (for stationarity and 
normality) highlighting volatility 
clusters (e.g., GFC and COVID crash)

• Distribution of cumulative returns to 
illustrate returns behavior and growth 
over time (e.g., long bull market post 
2009)





Jarque-Bera normality 
test

• The JB normality test statistic (30144) is 
larger than the critical value (i.e., six), then 
the null hypothesis of the log daily returns 
normal distribution is rejected

• The p-value from the chi-squared 
distribution with df=2 of the JB test statistic 
is ~0.0 then the null hypothesis of normality 
is rejected with 95% of statistical confidence

• The Jarque-Bera test confirms that the log 
daily returns do not follow a normal 
distribution 𝐽𝐵 = 𝑛 ∙

𝑆2
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Feature selection methodology

• S&P 500 lagged 9-day returns chosen as features to capture short-term 
momentum/reversion

• Temporal Dependencies: Lagging captures short-term memory in financial 
data, where recent movements influence near-term future movements

• Mean Reversion & Patterns: If markets exhibit mean reversion or 
momentum, lagged returns may help detect these patterns

• Practical Precedent: Box-Jenkins methods in the 1970s formalized using 
lags in ARIMA models. Nobel laureates like Robert F. Engle (ARCH models) 
contributed to understanding when lagged data can hold predictive power

• Widespread Use: Traders use lagged indicators (e.g., yesterday’s return, 
last week’s trend) to inform strategies



Multicollinearity assessment



Feature selection techniques



Selected features 
for modeling

• A parallel set of models is built using 
PCA components (likely a few principal 
components capturing most variance 
from the 9 lags) to compare against the 
SBF approach

• By testing both SBF vs. PCA we evaluate 
if dimensionality reduction improves 
model performance or efficiency

• This addresses whether to focus on 
interpretability (keeping actual lag 
features SBF) or potential accuracy 
gains (using abstract components PCA)

SBF offers a balanced middle ground: more 
features than LASSO to avoid underfitting and 
less features than an all-inclusive approach



Forecasting models benchmark

Model Strengths Weaknesses Best Use Cases

MLR Simple, fast, interpretable Limited to linear relationships
Small/moderate-sized datasets

Interpretability crucial

XGBoost
High accuracy

Handles complex interactions

Interpretability issues

Tuning complexity

Structured data

Predictive accuracy

SVM
High-dimensional

Nonlinear boundaries

Complex tuning

Slower training

Nonlinear

Moderate-sized datasets

ANN Flexible nonlinear modeling
Overfitting risk

Low explainability

Hidden nonlinear patterns

Adequate data

DNN Learns deep/complex patterns
High computational needs

Severe overfitting

Large datasets

Complex patterns (images)



Model 
evaluation

• Training vs. Testing: All models were trained on the 1997–
2017 data and then evaluated in 2018–2020 test data to 
check generalization

• This was a supervised regression task, where models 
learned to predict next-day returns from lagged returns

• In walk-forward (time-series) cross-validation, models are 
re-trained and tested on expanding/rolling windows, 
preserving time order



Forecasting accuracy metrics

Model Predictor Set RMSE MAE MAPE MASE
SBF 0.01470 0.00895 113.02260 0.68060
PCA 0.01483 0.00899 113.70940 0.68393
SBF 0.01457 0.00889 114.24760 0.67645
PCA 0.01629 0.00932 112.33880 0.70934
SBF 0.01477 0.00896 125.63300 0.68151
PCA 0.01473 0.00896 130.73850 0.68150
SBF 0.01467 0.00893 112.88810 0.67978
PCA 0.01484 0.00899 114.67790 0.68409
SBF 0.01471 0.00895 112.90700 0.68062
PCA 0.01482 0.00899 113.93390 0.68362

Deep Neural Network
(DNN)

Scale Dependent Scale Independent

Multiple Linear Regression

Extreme Gradient Boosting
(XGBoost)
Support Vector Machine
(RBF)
Artificial Neural Network
(ANN)

• The numerical results are computed on the training set
• Models are benchmarked against a random walk baseline



Forecasting model training runtime



Forecasting model training runtime

Algorithm Runtime (Seconds) Delta Runtime (Percent)
Multiple Linear Regression (SBF) 1.32160 Baseline

Multiple Linear Regression (PCA) 2.18499 65.30%

XGBoost (SBF) 3.60908 173.10%

XGBoost (PCA) 4.45782 237.30%

SVM (SBF) 8.86284 570.60%

SVM (PCA) 10.55498 698.70%

ANN (SBF) 5.38184 307.20%

ANN (PCA) 14.60274 1004.90%

DNN (SBF) 5.00221 278.50%

DNN (PCA) 15.25054 1053.90%



Forecasting accuracy takeaways

• Selection by Filtering (SBF) yields better or comparable forecasting 
accuracy than Principal Component Analysis (PCA) in the training 
range
• This suggests that when the predictors show low multicollinearity the 

dimensionality reduction of PCA is not significantly beneficial

• The forecasting accuracy metrics (RMSE, MAE, MAPE, MASE) were 
relatively close across all five models (Multiple Linear Regression, 
XGBoost, SVM, ANN, DNN) and both predictor sets

• The traditional Multiple Linear Regression (MLR) model achieved 
comparable levels of forecasting accuracy to the more advanced AI-
driven models, but with a much lower runtime



Forecasting accuracy: testing set

SBF PCA



Forecasting accuracy: testing set

SBF PCA



Forecasting accuracy metrics: testing set

Model Predictor Set RMSE MAE MAPE MASE

SBF 0.014703 0.008945 113.027546 0.680603

PCA 0.014831 0.008989 113.709691 0.683929

SBF 0.014457 0.008856 111.008100 0.673793

PCA 0.015934 0.009278 122.203322 0.705939

SBF 0.014767 0.008951 125.562054 0.681048

PCA 0.014728 0.008957 130.755548 0.681513

SBF 0.014703 0.008945 113.111680 0.680602

PCA 0.014828 0.008987 112.700635 0.683763

SBF 0.014776 0.008967 112.215480 0.682268

PCA 0.014832 0.008989 114.179355 0.683921

Scale Dependent Scale Independent

DNN 

MLR 

XGBoost 

SVM 

ANN 



Forecasting 
accuracy 
metrics: 

testing set



Trading strategy: design and implementation

• Signal generation: Look at the predicted next-
day return direction relative to prior prediction

• A buy signal is triggered when a model 
predicts a shift from a negative to a positive 
return, suggesting an upward movement

• A sell signal is issued when a shift from a 
positive to a negative return is forecasted, 
indicating a potential downturn

• A hold signal is maintained when no 
significant change in return direction is 
predicted, implying no trading action

• The strategy tries to capture market reversals 
by acting when the model predicts a change in 
trend direction



Benefits of simplicity

• Less risk of overfitting strategy rules 
to past

• Easier to attribute performance to 
model vs. complicated rule synergy

• Lower chance of capturing noise: A 
simple reduces noise and overfitting

• Focus on key patterns: Basic reversal 
targets fundamental market 
behavior (trend changes) which are 
relatively stable phenomena

• Ease of interpretation: Traders can 
understand why a signal happened



Trading strategy:
design and implementation

• Avoiding Look-Ahead Bias
• Shift Signals by One Day: Any signal generated on day t (based on info up 

to t) is executed at the open of day t+1. This ensures the model is not 
trading on information it could not have known (like using day t’s closing 
price to trade on day t – which is impossible in real time)

• By shifting forward, any inadvertent peeking at future data when 
backtesting is eliminated. This simulates how yesterday’s predictions are 
used for today’s trades

• Prevent inflated performance due to hindsight

• Uniform Application
• All models' signals (buy/sell/hold) are generated the same way, so 

differences in results are due to model forecasts, not strategy differences



Data requirements

• Amount of Data: ML algs typically require large amounts of 
data to train effectively. If your dataset is limited, a NN might 
not perform better than a simpler model

• Feature Engineering: Multiple regression models can benefit 
significantly from carefully engineered features, potentially 
matching or exceeding the performance of a ML alg

• Interpretability: Multiple regression models are more 
interpretable, allowing for better understanding and 
validation of the relationships captured

• Black Box Nature of NNs: The complexity of NNs can make it 
difficult to interpret the model's decisions, which is a 
disadvantage in fields where understanding the model is 
crucial



Computational 
resources and 
mixed results

• Training Time: NNs require more 
computational power and time to 
train

• Optimization Challenges: They can 
be more sensitive to hyperparameters 
and require more careful tuning

• Empirical Evidence: Studies 
comparing linear models and NNs for 
financial forecasting have produced 
mixed results. In some cases, simpler 
models perform just as well or better



Trading strategy: design and implementation

• After models are trained and tested, each model is used (without 
retraining) to generate predictions on the Trading Range (2021–2024)

• XGBoost had best forecast accuracy, so one might expect it to generate the 
best trading returns

• Although XGBoost achieved highest forecasting accuracy, for completeness 
all models are evaluated in trading

• The results will show if best forecast accuracy translates to best trading 
performance (not always the case, because small accuracy differences 
might not matter or might be offset by other factors like consistency or 
variance of errors)

• Benchmark Buy-and-Hold on SPY for the same period to compare passive 
vs. model-driven approach



MLR



XGBoost



SVM



ANN



DNN



Comparative analysis



Trading results



Why did MLR do well?

• MLR vs. AI Models: Surprisingly, Multiple Linear Regression’s trading performance 
was among the top

• It nearly matched deep learning in return and Sharpe, and equally minimized risk 
(volatility, drawdown)

• The S&P 500 might have a lot of linear auto-correlation structure (e.g., mild 
momentum or mean reversion that a linear model can catch). The additional 
complexity of non-linear models did not add much extra predictive power 
(consistent with the similar accuracy metrics)

• MLR, being stable, might not overfit, thus giving consistent signals, whereas more 
complex models could occasionally predict spurious reversals

• Trading frequency: If MLR was a bit less aggressive in flipping signals than some AI 
models (like XGBoost may react to slight changes), it might have fewer trades, 
hence lower cost impact and steadier performance

• Cost-aware strategy design is crucial!



Practical implications for traders

Complex Models vs Simpler: If transaction costs are non-trivial, the 
complexity might not pay off. A simpler, perhaps slower-moving model (like 
regression) might yield nearly as good net performance with fewer trades

Interpretability and Trust: Traders might prefer MLR or simpler models 
if they perform similarly, because understanding why a signal is 
generated is easier (no black-box). This can be important in high-stakes 
financial decisions

Market Regime Consideration: In calm trending times, the simple 
model might do just fine. The AI models might prove their worth in 
highly volatile or complex pattern times, but those are not so frequent. 
So day-to-day, simpler could be more robust



When to 
prefer 
simpler 
models

• Computational resources are limited 
(we see large runtime differences)

• Need for quick decisions (low latency, 
where simpler models shine)

• Market is efficient enough that linear 
models capture most signals

• Interpretability or regulatory necessity

• The strategy must be easily 
adjusted/communicated



R packages

Library Usage / Purpose
caret Core engine for train, tuning, and resampling - allows for model comparison and cross-validation
corrplot Creates visual correlation matrices (heatmaps), helping spot multicollinearity among variables
forecast Provides time series forecasting functions and 'accuracy()' for calculating RMSE, MAE, MAPE, etc.
kernlab Implements kernel-based machine learning methods (SVM), used with the RBF kernel (svmRadial)
neuralnet Builds and trains feedforward neural networks (ANN / DNN), specifying hidden layers, activation functions, etc.
PerformanceAnalytics Performance and risk analysis tools for returns, drawdowns, charts, Sharpe ratios, and annualized metrics
quantmod Simplifies financial data extraction from sources like Yahoo! and provides quick charting and transformations
tseries Time-series tools (e.g., jarque.bera.test for normality checks), common in finance and econometrics
xgboost Trains Extreme Gradient Boosting models (gradient-boosted decision trees) for structured data
writexl Exports data frames to Excel (.xlsx) files, useful for saving outputs or performance logs
car Contains additional regression diagnostics, including vif() for checking multicollinearity
ggplot2 Creating data visualizations (bar charts, line charts, etc.)



Final takeaway

• Traders and financial analysts should evaluate 
the trade-off between model complexity and 
practical benefits

• Simpler approaches often work surprisingly 
well and are easier to manage, whereas 
advanced models need to prove their worth 
through tangible improvements in predictive 
power or trading outcomes before displacing 
the trusty linear regression



Manual driving vs 
autonomous driving

A metaphor for multiple regression vs neural 
networks and deep learning





R code snippets



R code snippets

# Univariate Filters
sbfctrlt <- sbfControl(functions=lmSBF)
sbft <- sbf(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,sbfControl=sbfctrlt)

# Recursive Feature Elimination
rfectrlt <- rfeControl(functions=lmFuncs)
rfet <- rfe(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,rfeControl=rfectrlt)

# Predictor Features Selection Embedded Methods
lassot <- train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,method="lasso")
predictors(lassot)

# eXtreme Gradient Boosting Regression training
xgbmta <- train(rspy~rspy1+rspy2+rspy5,data=rspyt,method="xgbTree")
xgbmtb <- 
train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,method="xgbTree",preProcess="pca")



R code snippets

# Intermediate testing step as newdata needs to be same length as training range 
xgbmpa <- predict.train(xgbmta,newdata=rspyp)
xgbmpb <- predict.train(xgbmtb,newdata=rspyp)

# Limited to testing range
xgbmdfa <- cbind(index(rspyp),as.data.frame(xgbmpa))
xgbmla <- xts(xgbmdfa[,2],order.by=as.Date(xgbmdfa[,1]))
xgbmfa <- window(xgbmla,start="2018-01-01")
xgbmdfb <- cbind(index(rspyp),as.data.frame(xgbmpb))
xgbmlb <- xts(xgbmdfb[,2],order.by=as.Date(xgbmdfb[,1]))
xgbmfb <- window(xgbmlb,start="2018-01-01")



R code snippets

# Artificial Neural Network Regression training

annta <- 
train(rspy~rspy1+rspy2+rspy5,data=rspyt,method="neuralnet",trContr
ol=tsctrlt)

anntb <- 
train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,
data=rspyt,method="neuralnet", preProcess="pca",trControl=tsctrlt)



# DNN Regression training

dnnta <- 
train(rspy~rspy1+rspy2+rspy5,data=rspyt,method="neuralnet",trContro
l=tsctrlt)

dnntb <- 
train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,d
ata=rspyt,method="neuralnet",preProcess="pca",trControl=tsctrlt)

R code snippets



R code snippets
# Deep Neural Network Regression trading signals
dnnsig <- Lag(ifelse(Lag(dnns)<0&dnns>0,1,ifelse(Lag(dnns)>0&dnns<0,-1,0)))
dnnsig[is.na(dnnsig)] <- 0
# Deep Neural Network Regression trading positions
dnnpos <- ifelse(dnnsig>1,1,0)
for(i in 1:length(dnnpos)) {
  dnnpos[i] <- ifelse(dnnsig[i]==1,1,
                      ifelse(dnnsig[i]==-1,0,
                             dnnpos[i-1]))}
dnnpos[is.na(dnnpos)] <- 0

# Multiple Linear Regression Method Trading Strategy Performance Comparison
lmret <- lmpos*rspys[,1]
lmretc <- ifelse(
  (lmsig==1|lmsig==-1) & lmpos!=Lag(lmpos),
  (lmpos*rspys[,1])-0.001,
  lmpos*rspys[,1])
lmcomp <- cbind(lmret,lmretc,rspys[,1])
colnames(lmcomp) <- c("lmret","lmretc","rspy")
table.AnnualizedReturns(lmcomp)
charts.PerformanceSummary(lmcomp,main="Multiple Linear Regression Method Daily Returns Comparison")
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