From Regression to Neural Networks: Evaluating AI Models for Real-World Financial Trading Strategies

Open Source Quantitative Finance Research Conference

Chicago, IL – April 11-12, 2025

Davide Pandini PhD, CMT, MFTA, CFTe, CSTA

Disclaimer

"... There are three types of lies: lies, damn lies and statistics ..."

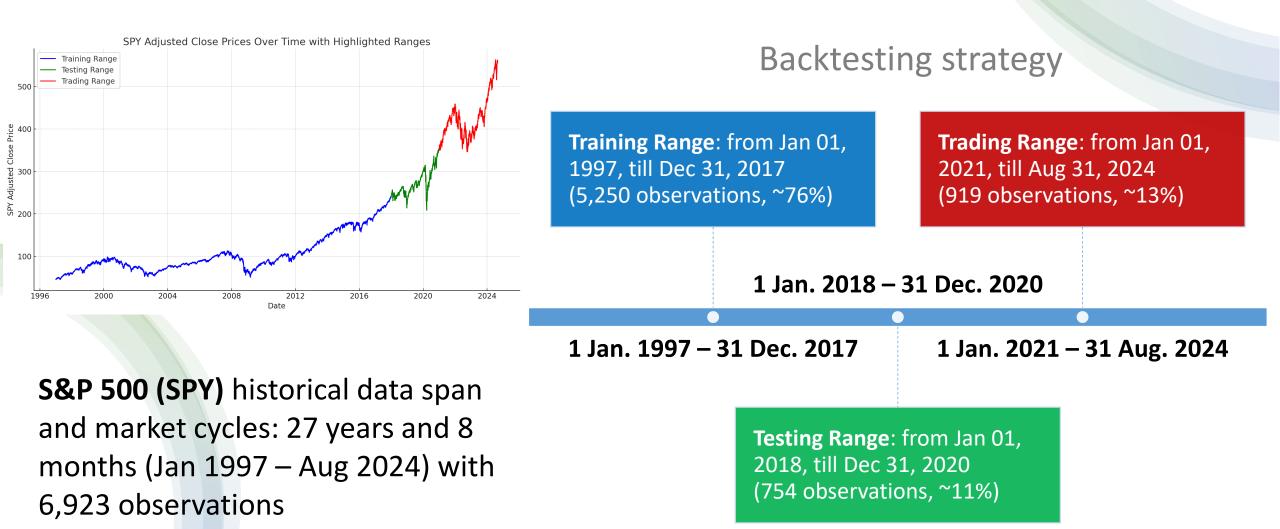
Benjamin Disraeli (1804-1881) *Prime Minister of Great Britain from 1874 to 1880*

Prediction is very difficult ... especially if it's about the financial markets!

"... Prediction is very difficult, especially if it's about the future! ..."

Niels Bohr (1885-1962) Danish physicist, Nobel Prize in Physics (1922)

Data analysis and backtesting



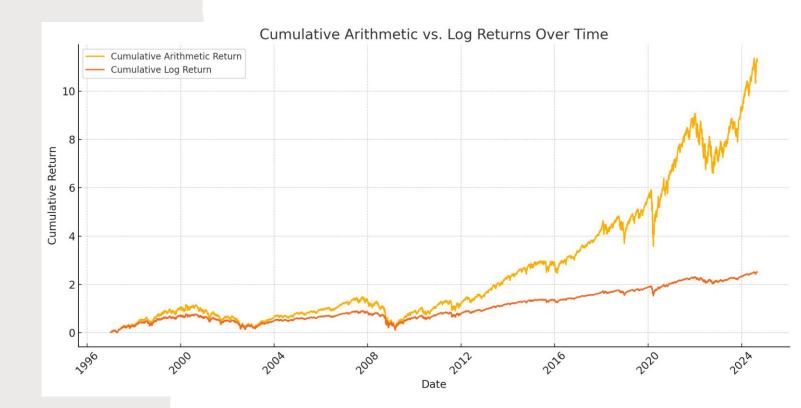
SPY Adjusted Close Prices Over Time with Highlighted Ranges

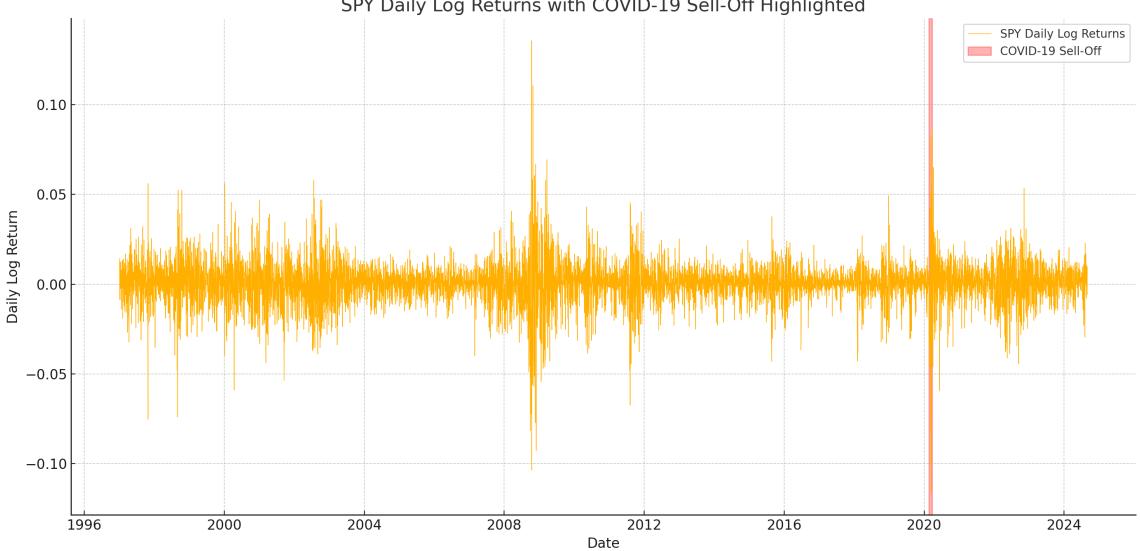
Capturing market events

Feature	2008 Global Financial Crisis	2020 COVID-19 Sell-off		
Cause	Housing bubble, financial instability	Global pandemic and lockdowns		
Market Decline Speed	Gradual, multi-month decline	Sharp, 1-month drop		
Depth of Decline	~57% (S&P 500)	~34% (S&P 500)		
Recovery Time	~5 years	~5-6 months		
Policy Response	Bailouts, QE, TARP, regulatory changes	Rapid fiscal and monetary stimulus		
Economic Impact	Deep recession, high unemployment	Sharp but brief recession		
Investor Sentiment	Prolonged caution	Rapid rebound		
Long-term Impact	Regulatory reforms, cautious investing	Digital transformation, resilience		

Backtesting window selection

- Include both bear and bull markets in backtesting for holistic strategy evaluation to avoid skewed results if only one market regime is considered
- Consistent backtesting window sizes for reliable performance assessment
- Log daily returns (for stationarity and normality) highlighting volatility clusters (e.g., GFC and COVID crash)
- Distribution of cumulative returns to illustrate returns behavior and growth over time (e.g., long bull market post 2009)

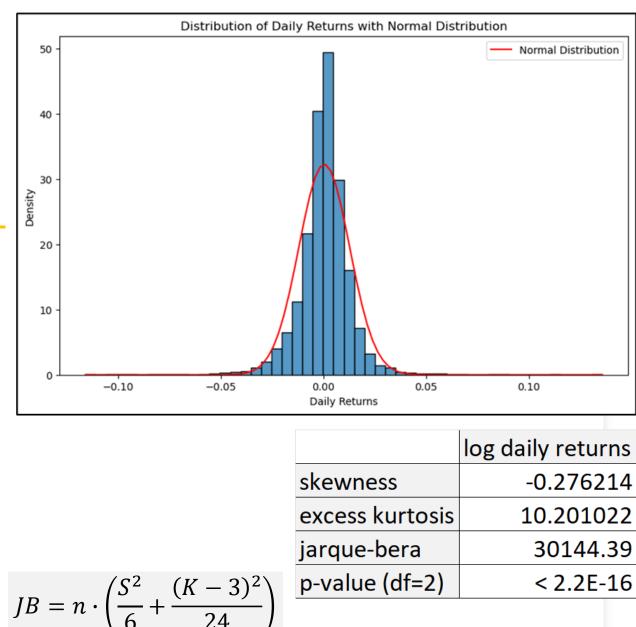




SPY Daily Log Returns with COVID-19 Sell-Off Highlighted

Jarque-Bera normality test

- The JB normality test statistic (30144) is larger than the critical value (i.e., six), then the null hypothesis of the log daily returns normal distribution is rejected
- The p-value from the chi-squared distribution with df=2 of the JB test statistic is ~0.0 then the null hypothesis of normality is rejected with 95% of statistical confidence
- The Jarque-Bera test confirms that the log daily returns do not follow a normal distribution

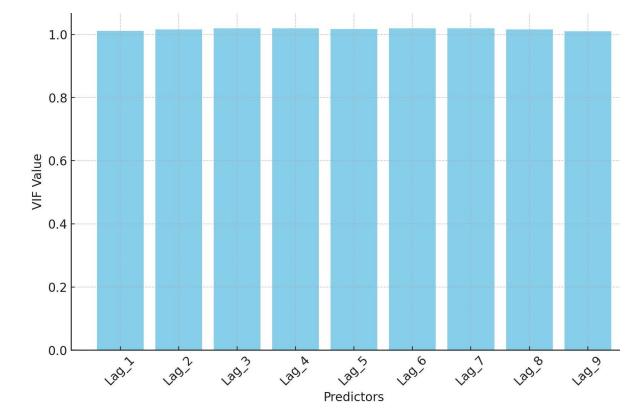


Feature selection methodology

- S&P 500 lagged 9-day returns chosen as features to capture short-term momentum/reversion
- **Temporal Dependencies**: Lagging captures short-term memory in financial data, where recent movements influence near-term future movements
- Mean Reversion & Patterns: If markets exhibit mean reversion or momentum, lagged returns may help detect these patterns
- **Practical Precedent**: Box-Jenkins methods in the 1970s formalized using lags in ARIMA models. Nobel laureates like Robert F. Engle (ARCH models) contributed to understanding when lagged data can hold predictive power
- Widespread Use: Traders use lagged indicators (e.g., yesterday's return, last week's trend) to inform strategies

Multicollinearity assessment

							-			1
rspy1	1.00	-0.07	-0.06	0.00	-0.00	-0.04	-0.00	-0.02	0.02	- 0.8
rspy2	-0.07	1.00	-0.07	-0.06	0.00	-0.00	-0.04	-0.00	-0.02	- 0.6
rspy3	-0.06	-0.07	1.00	-0.07	-0.06	0.00	-0.00	-0.04	-0.00	- 0.4
rspy4	0.00	-0.06	-0.07	1.00	-0.07	-0.06	0.00	-0.00	-0.04	- 0.2
rspy5	-0.00	0.00	-0.06	-0.07	1.00	-0.07	-0.06	0.00	-0.00	- 0
rspy6	-0.04	-0.00	0.00	-0.06	-0.07	1.00	-0.07	-0.06	0.00	0.2
rspy7	-0.00	-0.04	-0.00	0.00	-0.06	-0.07	1.00	-0.07	-0.06	0.4
rspy8	-0.02	-0.00	-0.04	-0.00	0.00	-0.06	-0.07	1.00	-0.07	-0.6
rspy9	0.02	-0.02	-0.00	-0.04	-0.00	0.00	-0.06	-0.07	1.00	-0.8
	rspy1	rspy2	rspy3	rspy4	rspy5	rspy6	rspy7	rspy8	rspy9	-1



Feature selection techniques

Method	Description	Туре
Selection by Filtering (SBF)	Evaluates each feature independently for relevance	Filter
Recursive Feature Elimination (RFE)	Iteratively trains models, removing the least important features each round	Wrapper
LASSO Regression	SSO Regression Performs feature selection integrated into model training via regularization; Penalizes and sets less important feature coefficients to zero	
rincipal Component AnalysisTransforms original correlated features into fewer uncorrelated components,PCA)preserving most of the data's variance		Feature Extraction

Selected features for modeling

- A parallel set of models is built using PCA components (likely a few principal components capturing most variance from the 9 lags) to compare against the SBF approach
- By testing both SBF vs. PCA we evaluate if dimensionality reduction improves model performance or efficiency
- This addresses whether to focus on interpretability (keeping actual lag features SBF) or potential accuracy gains (using abstract components PCA)

Method	Explanatory variables selected							
SBF	rspy_(t-1) rspy_(t-2) rspy_(t-5)							
RFE	rspy_(t-1)	rspy_(t-2)	rspy_(t-5)	rspy_(t-7)				
LASSO	rspy_(t-1)	rspy_(t-2)						

SBF offers a balanced middle ground: more features than LASSO to avoid underfitting and less features than an all-inclusive approach

Aspect	SBF (Selected Best Features)	PCA (Principal Component Analysis)		
Annroach	Selects the most relevant features	Transforms the original features into		
Approach	from the original dataset.	a set of uncorrelated components.		
Interpretability	High (features retain their original meaning).	Low (principal components are combinations		
Interpretability		of original features).		
Dimensionality Deduction	Limited (retains original features	Significant (reduces to fewer uncorrelated		
Dimensionality Reduction	with potential multicollinearity).	components).		
Best Used For	When feature interpretability is essential	When reducing dimensionality and		
Dest Useu Fui	and multicollinearity is not a major issue.	multicollinearity is important.		
Assumptions	No assumptions about data structure.	Assumes linear relationships among features.		
Risk	May miss complex patterns by focusing	Loss of interpretability and risk of ignoring		
אפוח	only on a subset of features.	non-linear relationships.		

Forecasting models benchmark

Model	Strengths	Weaknesses	Best Use Cases		
MLR	Simple, fast, interpretable	Limited to linear relationships	Small/moderate-sized datasets		
	Simple, fast, interpretable		Interpretability crucial		
XGBoost	High accuracy	Interpretability issues	Structured data		
AGDUUSI	Handles complex interactions	Tuning complexity	Predictive accuracy		
SVM	High-dimensional	Complex tuning	Nonlinear		
2 4 141	Nonlinear boundaries	Slower training	Moderate-sized datasets		
ANN	Flexible nonlinear modeling	Overfitting risk	Hidden nonlinear patterns		
	Flexible nonlinear modeling	Low explainability	Adequate data		
DNN	Learns deep/complex patterns	High computational needs			
		Severe overfitting	Complex patterns (images)		

Parameter	First Method	Second Method		
initialWindow	168 (train on first 168	48 (train on first 48 observations		
INICIALWINDOW	observations initially).	initially).		
h a mi a a n	82 (test on 82 observations	12 (test on 12 observations		
horizon	following the training period).	following the training period)		
fixedWindow	Keeps training window fixed at 168.	Keeps training window fixed at 48.		
	No dina batukaan tima aliasa	Skips 12 observations after each		
skip	No skips between time slices.	testing set.		

Model evaluation

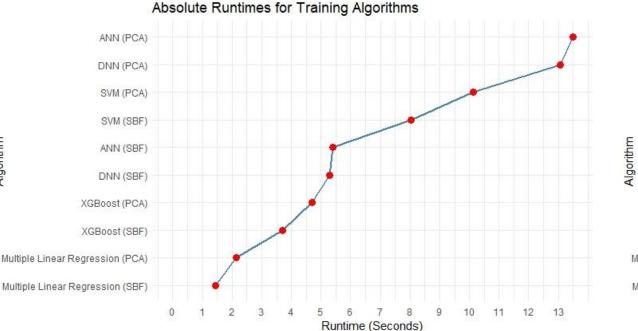
- Training vs. Testing: All models were trained on the 1997– 2017 data and then evaluated in 2018–2020 test data to check generalization
- This was a supervised regression task, where models learned to predict next-day returns from lagged returns
- In walk-forward (time-series) cross-validation, models are re-trained and tested on expanding/rolling windows, preserving time order

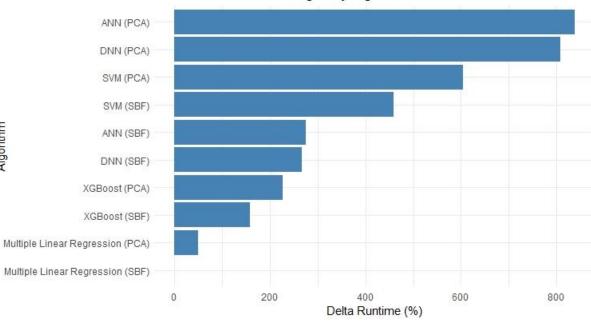
Forecasting accuracy metrics

- The numerical results are computed on the training set
- Models are benchmarked against a random walk baseline

		Scale De	pendent	Scale Independent		
Model	Predictor Set	RMSE	MAE	MAPE	MASE	
Multiple Lipser Pograssian	SBF	0.01470	0.00895	113.02260	0.68060	
Multiple Linear Regression	PCA	0.01483	0.00899	113.70940	0.68393	
Extreme Gradient Boosting	SBF	0.01457	0.00889	114.24760	0.67645	
(XGBoost)	PCA	0.01629	0.00932	112.33880	0.70934	
Support Vector Machine	SBF	0.01477	0.00896	125.63300	0.68151	
(RBF)	PCA	0.01473	0.00896	130.73850	0.68150	
Artificial Neural Network	SBF	0.01467	0.00893	112.88810	0.67978	
(ANN)	PCA	0.01484	0.00899	114.67790	0.68409	
Deep Neural Network	SBF	0.01471	0.00895	112.90700	0.68062	
(DNN)	PCA	0.01482	0.00899	113.93390	0.68362	

Forecasting model training runtime





Runtime Delta Percentages by Algorithm

Algorithm

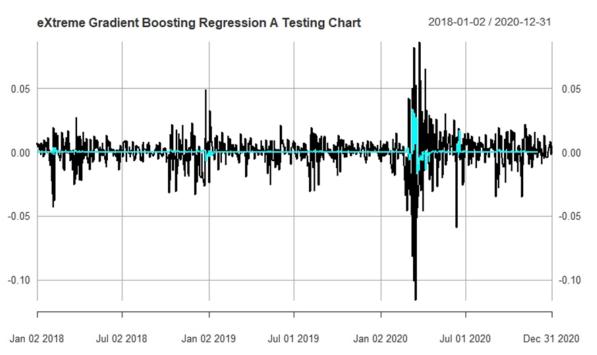
Forecasting model training runtime

Algorithm	Ru	intime (Seconds)	Delta Runtim	e (Percent)
Multiple Linear Regression (SBF)		1.32160		Baseline
Multiple Linear Regression (PCA)		2.18499		65.30%
XGBoost (SBF)		3.60908		173.10%
XGBoost (PCA)		4.45782		237.30%
SVM (SBF)		8.86284		570.60%
SVM (PCA)		10.55498		698.70%
ANN (SBF)		5.38184		307.20%
ANN (PCA)		14.60274		1004.90%
DNN (SBF)		5.00221		278.50%
DNN (PCA)		15.25054		1053.90%

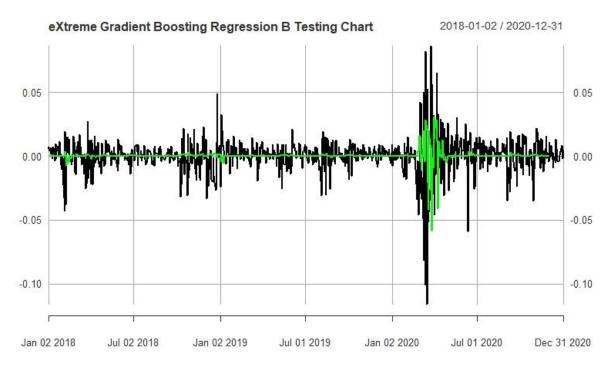
Forecasting accuracy takeaways

- Selection by Filtering (SBF) yields better or comparable forecasting accuracy than Principal Component Analysis (PCA) in the training range
 - This suggests that when the predictors show low multicollinearity the dimensionality reduction of PCA is not significantly beneficial
- The forecasting accuracy metrics (RMSE, MAE, MAPE, MASE) were relatively close across all five models (Multiple Linear Regression, XGBoost, SVM, ANN, DNN) and both predictor sets
- The traditional Multiple Linear Regression (MLR) model achieved comparable levels of forecasting accuracy to the more advanced Aldriven models, but with a much lower runtime

Forecasting accuracy: testing set



PCA

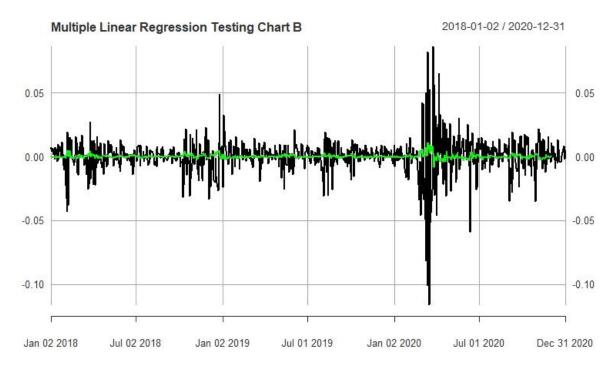


Forecasting accuracy: testing set

Multiple Linear Regression Testing Chart A 2018-01-02 / 2020-12-31 0.05 0.05 Aller a Aller Wildle Hits can be a s Ally Marker albertal Up 0.00 0.00 -0.05 -0.05 -0.10 -0.10 Jan 02 2018 Jul 02 2018 Jan 02 2019 Jul 01 2019 Jan 02 2020 Jul 01 2020 Dec 31 2020

SBF

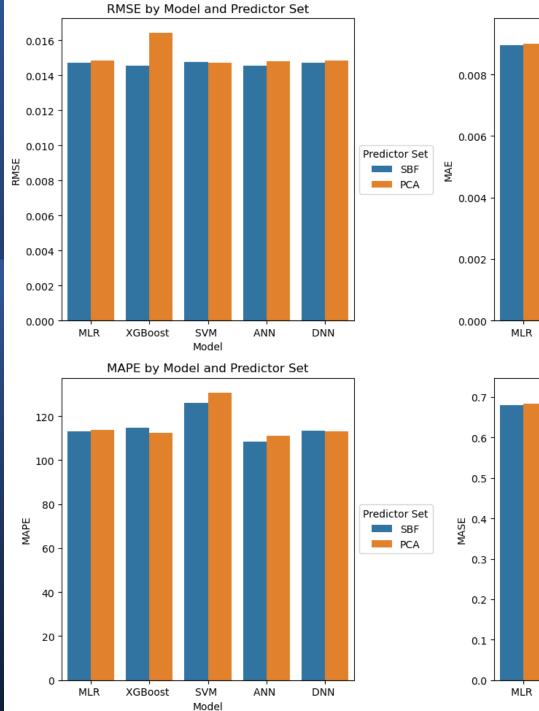
PCA

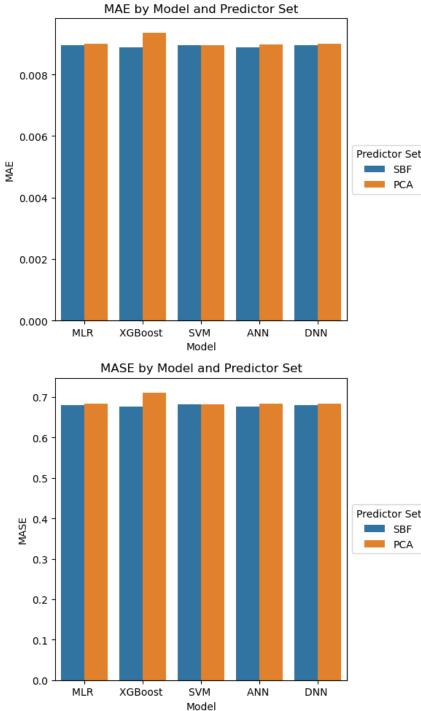


Forecasting accuracy metrics: testing set

		Scale Dependent		Scale Inde	pendent
Model	Predictor Set	RMSE	MAE	MAPE	MASE
MLR	SBF	0.014703	0.008945	113.027546	0.680603
	PCA	0.014831	0.008989	113.709691	0.683929
XGBoost	SBF	0.014457	0.008856	111.008100	0.673793
	PCA	0.015934	0.009278	122.203322	0.705939
SVM	SBF	0.014767	0.008951	125.562054	0.681048
	PCA	0.014728	0.008957	130.755548	0.681513
ANN	SBF	0.014703	0.008945	113.111680	0.680602
AININ	PCA	0.014828	0.008987	112.700635	0.683763
DNN	SBF	0.014776	0.008967	112.215480	0.682268
	PCA	0.014832	0.008989	114.179355	0.683921

Forecasting accuracy metrics: testing set





Trading strategy: design and implementation

- Signal generation: Look at the predicted nextday return direction relative to prior prediction
 - A **buy signal** is triggered when a model predicts a shift from a negative to a positive return, suggesting an upward movement
 - A sell signal is issued when a shift from a positive to a negative return is forecasted, indicating a potential downturn
 - A hold signal is maintained when no significant change in return direction is predicted, implying no trading action
- The strategy tries to capture market reversals by acting when the model predicts a change in trend direction

1,000

Benefits of simplicity

- Less risk of overfitting strategy rules to past
- Easier to attribute performance to model vs. complicated rule synergy
- Lower chance of capturing noise: A simple reduces noise and overfitting
- Focus on key patterns: Basic reversal targets fundamental market behavior (trend changes) which are relatively stable phenomena
- Ease of interpretation: Traders can understand why a signal happened

• Avoiding Look-Ahead Bias

- Shift Signals by One Day: Any signal generated on day t (based on info up to t) is executed at the open of day t+1. This ensures the model is not trading on information it could not have known (like using day t's closing price to trade on day t – which is impossible in real time)
- By shifting forward, any inadvertent peeking at future data when backtesting is eliminated. This simulates how yesterday's predictions are used for today's trades
- Prevent inflated performance due to hindsight
- Uniform Application
 - All models' signals (buy/sell/hold) are generated the same way, so differences in results are due to model forecasts, not strategy differences

Data requirements

- Amount of Data: ML algs typically require large amounts of data to train effectively. If your dataset is limited, a NN might not perform better than a simpler model
- Feature Engineering: Multiple regression models can benefit significantly from carefully engineered features, potentially matching or exceeding the performance of a ML alg
- Interpretability: Multiple regression models are more interpretable, allowing for better understanding and validation of the relationships captured
- Black Box Nature of NNs: The complexity of NNs can make it difficult to interpret the model's decisions, which is a disadvantage in fields where understanding the model is crucial

Computational resources and mixed results

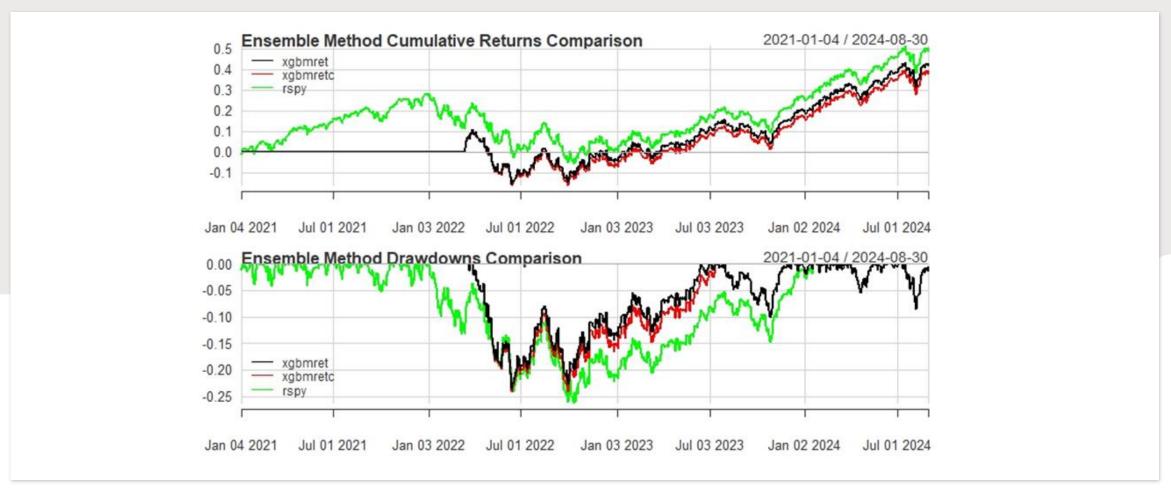
- **Training Time**: NNs require more computational power and time to train
- Optimization Challenges: They can be more sensitive to hyperparameters and require more careful tuning
- Empirical Evidence: Studies comparing linear models and NNs for financial forecasting have produced mixed results. In some cases, simpler models perform just as well or better

Trading strategy: design and implementation

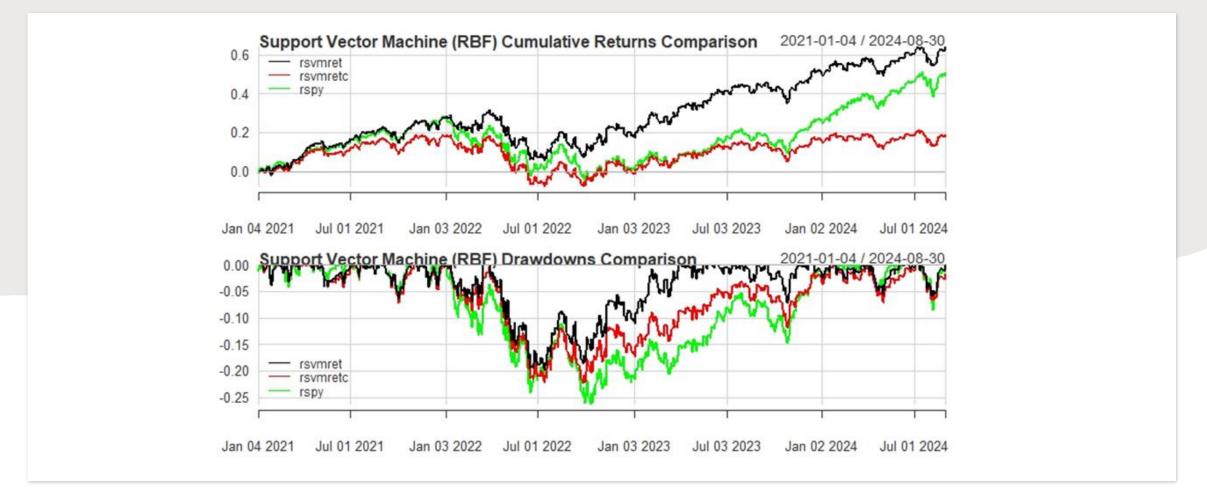
- After models are trained and tested, each model is used (without retraining) to generate predictions on the Trading Range (2021–2024)
- XGBoost had best forecast accuracy, so one might expect it to generate the best trading returns
- Although XGBoost achieved highest forecasting accuracy, for completeness all models are evaluated in trading
- The results will show if best forecast accuracy translates to best trading performance (not always the case, because small accuracy differences might not matter or might be offset by other factors like consistency or variance of errors)
- Benchmark Buy-and-Hold on SPY for the same period to compare passive vs. model-driven approach

MLR

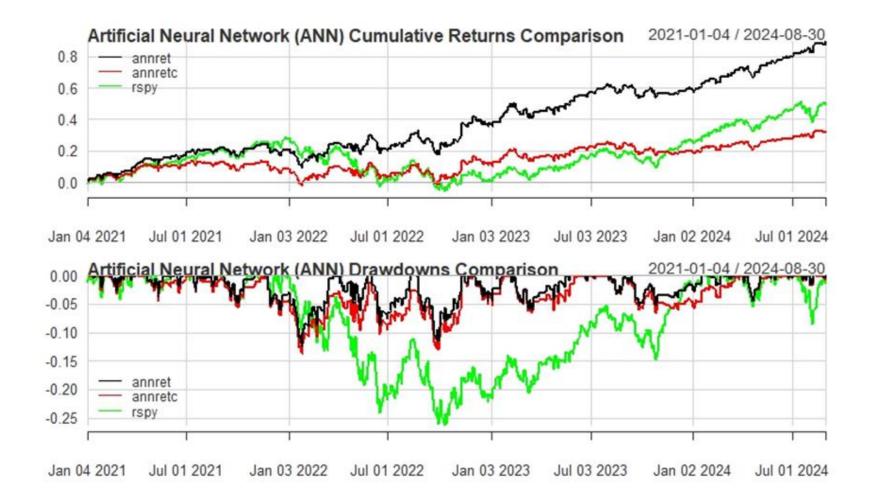
XGBoost



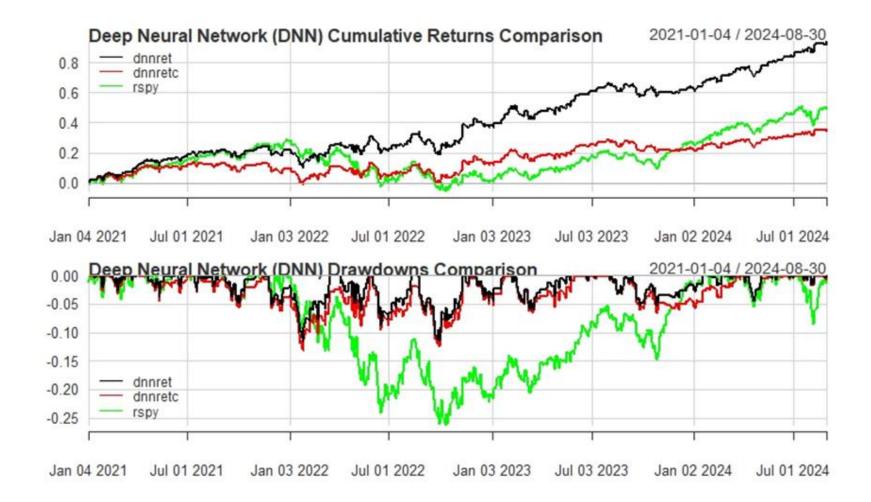
SVM



ANN



DNN



Comparative analysis

Trading results

Model	Trading Condition	Annualized	Annualized	Annualized	Maximum
Model	Trading Condition	Return	Std Dev	Sharpe	Drawdown
Multiple Linear Regression	w/o commissions	0.19260	0.13080	1.47300	0.12318
wultiple Linear Regression	w/ commissions	0.08200	0.13100	0.62590	0.14087
Extreme Gradient Boosting	w/o commissions	0.10320	0.14160	0.72860	0.23630
(XGBoost)	w/ commissions	0.09560	0.14180	0.67420	0.24092
Support Vector Machine	w/o commissions	0.14510	0.15040	0.96470	0.19880
(RBF)	w/ commissions	0.04850	0.15090	0.32150	0.22297
Artificial Neural Network	w/o commissions	0.19150	0.13070	1.46460	0.12318
(ANN)	w/ commissions	0.08100	0.13100	0.61810	0.13877
Deep Neural Network	w/o commissions	0.19920	0.13070	1.52420	0.11479
(DNN)	w/ commissions	0.08800	0.13100	0.67190	0.13157
Buy-and-Hold	w/o commissions	0.11890	0.16820	0.70690	0.26215

Why did MLR do well?

- MLR vs. AI Models: Surprisingly, Multiple Linear Regression's trading performance was among the top
- It nearly matched deep learning in return and Sharpe, and equally minimized risk (volatility, drawdown)
- The S&P 500 might have a lot of linear auto-correlation structure (e.g., mild momentum or mean reversion that a linear model can catch). The additional complexity of non-linear models did not add much extra predictive power (consistent with the similar accuracy metrics)
- MLR, being stable, might not overfit, thus giving consistent signals, whereas more complex models could occasionally predict spurious reversals
- Trading frequency: If MLR was a bit less aggressive in flipping signals than some AI models (like XGBoost may react to slight changes), it might have fewer trades, hence lower cost impact and steadier performance
- Cost-aware strategy design is crucial!

Practical implications for traders

Complex Models vs Simpler: If transaction costs are non-trivial, the complexity might not pay off. A simpler, perhaps slower-moving model (like regression) might yield nearly as good net performance with fewer trades

Interpretability and Trust: Traders might prefer MLR or simpler models if they perform similarly, because understanding why a signal is generated is easier (no black-box). This can be important in high-stakes financial decisions

Market Regime Consideration: In calm trending times, the simple model might do just fine. The AI models might prove their worth in highly volatile or complex pattern times, but those are not so frequent. So day-to-day, simpler could be more robust When to prefer simpler models

- Computational resources are limited (we see large runtime differences)
- Need for quick decisions (low latency, where simpler models shine)
- Market is efficient enough that linear models capture most signals
- Interpretability or regulatory necessity
- The strategy must be easily adjusted/communicated

R packages

Library	Usage / Purpose
caret	Core engine for train, tuning, and resampling - allows for model comparison and cross-validation
corrplot	Creates visual correlation matrices (heatmaps), helping spot multicollinearity among variables
forecast	Provides time series forecasting functions and 'accuracy()' for calculating RMSE, MAE, MAPE, etc.
kernlab	Implements kernel-based machine learning methods (SVM), used with the RBF kernel (svmRadial)
neuralnet	Builds and trains feedforward neural networks (ANN / DNN), specifying hidden layers, activation functions, etc.
PerformanceAnalytics	Performance and risk analysis tools for returns, drawdowns, charts, Sharpe ratios, and annualized metrics
quantmod	Simplifies financial data extraction from sources like Yahoo! and provides quick charting and transformations
tseries	Time-series tools (e.g., jarque.bera.test for normality checks), common in finance and econometrics
xgboost	Trains Extreme Gradient Boosting models (gradient-boosted decision trees) for structured data
writexl	Exports data frames to Excel (.xlsx) files, useful for saving outputs or performance logs
car	Contains additional regression diagnostics, including vif() for checking multicollinearity
ggplot2	Creating data visualizations (bar charts, line charts, etc.)

Final takeaway

- Traders and financial analysts should evaluate the trade-off between model complexity and practical benefits
- Simpler approaches often work surprisingly well and are easier to manage, whereas advanced models need to prove their worth through tangible improvements in predictive power or trading outcomes before displacing the trusty linear regression

A metaphor for multiple regression vs neural networks and deep learning

Nanual driving vs

o nom ours driving

on a mission to HANK YOU Sweet Home Chicago!

Univariate Filters sbfctrlt <- sbfControl(functions=ImSBF)</pre>

sbft <- sbf(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,sbfControl=sbfctrlt)

Recursive Feature Elimination

rfectrlt <- rfeControl(functions=ImFuncs)
rfet <- rfe(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,rfeControl=rfectrlt)</pre>

Predictor Features Selection Embedded Methods

lassot <- train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,method="lasso") predictors(lassot)

eXtreme Gradient Boosting Regression training

xgbmta <- train(rspy~rspy1+rspy2+rspy5,data=rspyt,method="xgbTree") xgbmtb <train(rspy2rspy1+rspy2+rspy2+rspy4+rspyE+rspy6+rspy2+rspy0_data=rspyt_method="ygbTree")

train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,data=rspyt,method="xgbTree",preProcess="pca")

Intermediate testing step as newdata needs to be same length as training range xgbmpa <- predict.train(xgbmta,newdata=rspyp) xgbmpb <- predict.train(xgbmtb,newdata=rspyp)</pre>

Limited to testing range

xgbmdfa <- cbind(index(rspyp),as.data.frame(xgbmpa))
xgbmla <- xts(xgbmdfa[,2],order.by=as.Date(xgbmdfa[,1]))
xgbmfa <- window(xgbmla,start="2018-01-01")
xgbmdfb <- cbind(index(rspyp),as.data.frame(xgbmpb))
xgbmlb <- xts(xgbmdfb[,2],order.by=as.Date(xgbmdfb[,1]))
xgbmfb <- window(xgbmlb,start="2018-01-01")</pre>

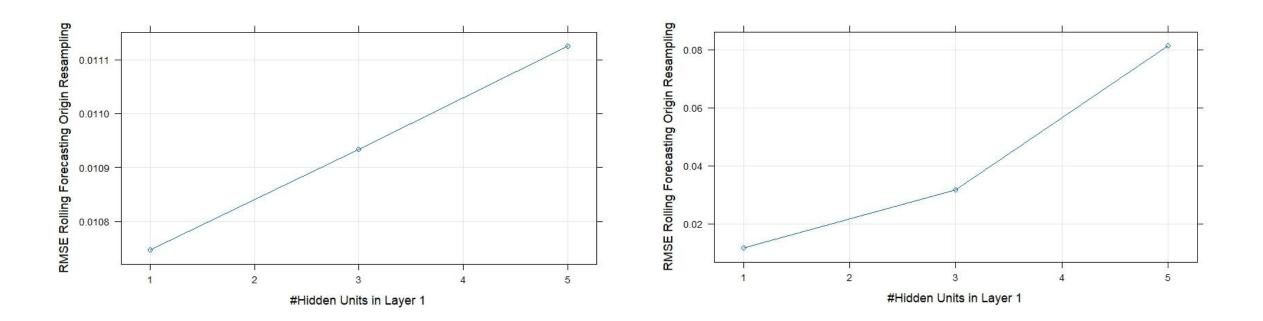
Artificial Neural Network Regression training

annta <-

train(rspy~rspy1+rspy2+rspy5,data=rspyt,method="neuralnet",trContr
ol=tsctrlt)

anntb <-

train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9, data=rspyt,method="neuralnet", preProcess="pca",trControl=tsctrlt)



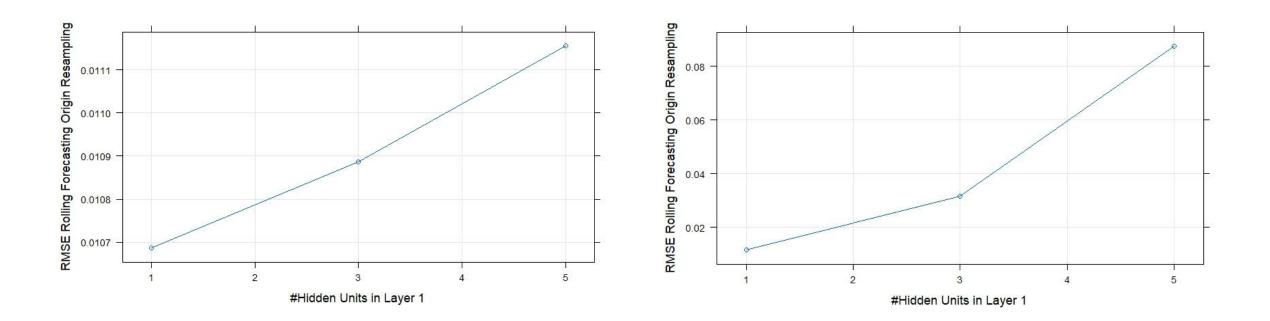
DNN Regression training

dnnta <-

train(rspy~rspy1+rspy2+rspy5,data=rspyt,method="neuralnet",trContro l=tsctrlt)

dnntb <-

train(rspy~rspy1+rspy2+rspy3+rspy4+rspy5+rspy6+rspy7+rspy8+rspy9,d ata=rspyt,method="neuralnet",preProcess="pca",trControl=tsctrlt)



```
# Deep Neural Network Regression trading signals
dnnsig <- Lag(ifelse(Lag(dnns)<0&dnns>0,1,ifelse(Lag(dnns)>0&dnns<0,-1,0)))
dnnsig[is.na(dnnsig)] <- 0
# Deep Neural Network Regression trading positions
dnnpos <- ifelse(dnnsig>1,1,0)
for(i in 1:length(dnnpos)) {
 dnnpos[i] <- ifelse(dnnsig[i]==1,1,</pre>
            ifelse(dnnsig[i]==-1,0,
                dnnpos[i-1]))}
dnnpos[is.na(dnnpos)] <- 0
# Multiple Linear Regression Method Trading Strategy Performance Comparison
Imret <- Impos*rspys[,1]</pre>
Imretc <- ifelse(
 (Imsig==1|Imsig==-1) & Impos!=Lag(Impos),
 (Impos*rspys[,1])-0.001,
 Impos*rspys[,1])
Imcomp <- cbind(Imret,Imretc,rspys[,1])</pre>
colnames(Imcomp) <- c("Imret","Imretc","rspy")</pre>
table.AnnualizedReturns(Imcomp)
```

charts.PerformanceSummary(Imcomp,main="Multiple Linear Regression Method Daily Returns Comparison")